通过比较list与vector在简单模拟实现时的不同进一步理解STL的底层

news2024/11/27 10:34:19

 cplusplus.com/reference/list/list/?kw=list

当我们大致阅读完list的cplusplus网站的文档时,我们会发现它提供的接口大致上与我们的vector相同。当然的,在常用接口的简单实现上它们也大体相同,但是它们的构造函数与迭代器的实现却大有不同。(食用本文时建议与文末的模拟实现代码一起食用,效果更佳)

一,list与vector在构造函数上的不同

 1.1成员封装的不同

我们在vector中,需要封装的成员只有我们顺序表的起始指针,有效元素的末尾指针,以及用来记录空间结束位置的指针:

如果我们在list中,便无法再这样封装,因为我们的list存放数据的内存并不连续,所以我们需要对链表的节点用额外的结构体封装,而在原本的list类里面我们封装的成员则是链表的头结点:

template<class T>
struct list_node
{
	T _data;
	list_node<T>* _next;
	list_node<T>* _prev;

};
template<class T>
class list
{
void empty_init()
{
	_head = new Node();
	_head->_next = _head;
	_head->_prev = _head;
}
list()
{
	empty_init();
}
typedef list_node<T> Node;
private:
	Node* _head;
};

1.2迭代器的封装的不同 

在vector中,迭代器可以直接简单的设置为我们存储数据类型的对应指针。但是在list中,我们发现迭代器需要指向的是一个节点,有人说那我直接照搬vector不也OK。但是这时候就会有个问题,因为我们的节点相当于一个自定义类型,后面在进行调用的时候不可避免的会去调用它的构造函数,同时我们迭代器又会有许多的函数去使用,所以迭代器也需要额外的用一个类来封装。

template<class T, class Ref, class Ptr>
struct list_iterator//tip
{
	typedef list_node<T> Node;
	typedef list_iterator<T, Ref, Ptr> Self;
};

TIPS:这里将迭代器与结点成员设置为公开是为了方便list类的调用,实际上我们在使用list时也无法直接调用这些成员,这也是对成员的保护方式。

二,list与vector在迭代器上的不同(重点) 

 2.1对迭代器的const修饰

在我们的vector中,由于我们的迭代器本身就是我们存储数据的类型的相应指针,所以我们可以通过直接加const的方式来实现我们的const_iterator。但是在list中,由于我们的迭代器是指向一个自定义类型的指针,而我们的自定义类型中存储数据。如果我们直接用const来修饰,会发现我们此时无法修改迭代器指向的结点,从而无法完成我们后续的遍历。如果我们要为const来再额外封装一个类,会使代码看上去非常冗余。

在stl的源码中有着这样的几行代码:

template <class T, class Ref, class Ptr>
struct __slist_iterator : public __slist_iterator_base
{
  typedef __slist_iterator<T, T&, T*>             iterator;
  typedef __slist_iterator<T, const T&, const T*> const_iterator;
  typedef __slist_iterator<T, Ref, Ptr>           self;

  typedef T value_type;
  typedef Ptr pointer;
  typedef Ref reference;
  typedef __slist_node<T> list_node;

我们发现,它的模板参数有三个。其实由于我们的目的是为了源结点中的值无法被改变,只需要我们在返回结点中的值时加上const修饰,而我们获取存储数据的方式无非两种,一种是对迭代器解引用(其中_node是当前迭代器指向的结点):

T& operator*()
{
	return _node->_data;
}

或者通过->来获取:

T* operator->()
{
	return &_node->_data;
}

 所以我们只需要对T*与T&在模板实例化时用const修饰即可:

typedef list_iterator<T,T&,T*> iterator;//tip
typedef list_iterator<T,const T&,const T*> const_iterator;//tip

 TIP:在迭代器的类型中我们又分为随机,双向和单向迭代器,从左向右为父级关系。在使用库中的sort时对list无法使用快排,因为他是双向迭代器,而vector之所以可以使用是因为他是随机迭代器。

2.2list反向迭代器的实现

通过上面的多个模板参数的引出,我们可以对反向的迭代器Reverse_iterator来封装进行封装:

template<class Iterator>
class ReverseListIterator
{
	// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的类型,而不是静态
	成员变量
		// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
		// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
public:
	typedef typename Iterator::Ref Ref;
	typedef typename Iterator::Ptr Ptr;
	typedef ReverseListIterator<Iterator> Self;
public:
	//
	// 构造
	ReverseListIterator(Iterator it) : _it(it) {}
	//
	// 具有指针类似行为
	Ref operator*() {
		Iterator temp(_it);
		--temp;
		return *temp;
	}
	Ptr operator->() { return &(operator*()); }
	//
	// 迭代器支持移动
	Self& operator++() {
		--_it;
		return *this;
	}
	Self operator++(int) {
		Self temp(*this);
		--_it;
		return temp;
	}
	Self& operator--() {
		++_it;
		return *this;
	}
	Self operator--(int)
	{
		Self temp(*this);
		++_it;
		return temp;
	}
	//
// 迭代器支持比较
bool operator!=(const Self& l)const{ return _it != l._it;}
bool operator==(const Self& l)const{ return _it != l._it;}
Iterator _it;
};

原理其实就是我们2.1中介绍到的,这里我们直接给出模拟实现代码。

三,list与vector其他方面不同的总结(不仅是模拟实现上)

附件:list的简单模拟实现代码(常用接口) 

/
#pragma once
#include <iostream>
#include <algorithm>
#include <assert.h>
#include <list>
using namespace std;

namespace ELY {

	template<class T>
	struct list_node
	{
		T _data;
		list_node<T>* _next;
		list_node<T>* _prev;

		list_node(const T& x = T())
			:_data(x)
			, _next(nullptr)
			, _prev(nullptr)
		{}
	};

	template<class T,class Ref,class Ptr>
	struct list_iterator//tip
	{
		typedef list_node<T> Node;
		typedef list_iterator<T,Ref,Ptr> Self;
		Node* _node;
		list_iterator(Node* node)
			:_node(node)
		{}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		Self operator--(int)
		{
			Self tmp(*this);
			_node = _node->_prev;
			return tmp;
		}

		Self operator++(int)
		{
			Self tmp(*this);
			_node = _node->_next;
			return tmp;
		}


		bool operator!=(const Self& s)
		{
			return _node != s._node;
		}


		bool operator==(const Self& s)
		{
			return _node == s._node;
		}
		
	};

	template<class T>
	class list
	{
		void empty_init()
		{
			_head = new Node();
			_head->_next = _head;
			_head->_prev = _head;
		}
	public:
		typedef list_node<T> Node;
		typedef list_iterator<T,T&,T*> iterator;//tip
		typedef list_iterator<T,const T&,const T*> const_iterator;//tip
		list()
		{
			empty_init();
		}

		list(const list<T>& list)
		{
			empty_init();
			for (auto i : list)
			{
				push_back(i);
			}
		}

		list<T>& operator=(list<T> list)
		{
			swap(list);
			return *this;
		}

		list(size_t n, const T& val = T())
		{
			empty_init();
			for (size_t i = 0; i < n; i++)
			{
				push_back(val);
			}
		}

		iterator begin()
		{
			return iterator(_head->_next);
		}

		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		iterator end() 
		{
			return iterator(_head);
		}

		const_iterator end() const
		{
			return const_iterator(_head);
		}


		void push_back(const T& x = T())
		{
			Node* newnode = new Node(x);
			Node* tail = _head->_prev;

			newnode->_next = _head;
			newnode->_prev = tail;

			tail->_next = newnode;
			_head->_prev = newnode;
		}

		iterator insert(iterator pos, const T& val)//tip
		{
			Node* newnode = new Node(val);
			Node* cur = pos._node;

			cur->_prev->_next = newnode;
			newnode->_prev = cur->_prev;

			cur->_prev = newnode;
			newnode->_next = cur;
			return iterator(newnode);
		}

		iterator push_front(const T& val)
		{
			return insert(begin(), val);
		}

		iterator erase(iterator pos)
		{
			assert(pos != end());
			Node* cur = pos._node;

			cur->_next->_prev = cur->_prev;
			cur->_prev->_next = cur->_next;
			
			pos = cur->_next;
			delete cur;

			return pos;
		}

		iterator pop_front()
		{
			return erase(begin());
		}

		iterator pop_back()
		{
			return erase(--end());
		}

		void clear()
		{
			auto i = begin();
			while (i != end())
			{
				i = erase(i);
			}
		}

		void swap(list<T>& list)
		{
			std::swap(_head, list._head);
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

	private:
		Node* _head;
	};
}
/
mylist.h

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2220705.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOv11[基础]】热力图可视化实践① | 视频版 | 输入为视频文件

目录 一 热力图 二 安装YOLOv11 三 实践 一 热力图 使用Ultralytics YOLO11生成的热图将复杂的数据转换为充满活力的彩色编码矩阵。这个可视化工具使用一系列颜色来表示不同的数据值,其中较暖的色调表示较高的强度

探索 SVG 创作新维度:svgwrite 库揭秘

文章目录 **探索 SVG 创作新维度&#xff1a;svgwrite 库揭秘**背景介绍库简介安装指南基础函数使用实战场景常见问题与解决方案总结 探索 SVG 创作新维度&#xff1a;svgwrite 库揭秘 背景介绍 在数字艺术和网页设计领域&#xff0c;SVG&#xff08;Scalable Vector Graphic…

如何有效维护您的WordPress在线商店内容:提高客户参与度与转化率的实用技巧

在电子商务领域&#xff0c;内容为王。新鲜、相关且有吸引力的内容能显著提升客户参与度和转化率。本文将探讨如何有效更新和维护您的在线商店内容&#xff0c;确保客户始终获得最佳体验。 定期更新产品信息 产品描述 产品描述是吸引客户和促成销售的关键。定期检查并更新产…

PyCharm借助MobaXterm跳板机连接服务器

服务器信息&#xff1a; Step 1 MovaXterm→Session→SSH输入服务器信息 Step 2 MovaXterm→Session→SSH→Network setting→SSG gateway(jump host) 输入跳板机信息 键入密码即可 Step 3 MovaXterm→Tunneling→New SSH tunnel 依次输入&#xff1a;A本机端口&#xff0c…

基于RBF神经网络的双参数自适应光储VSG构网逆变器MATLAB仿真模型

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 模型简介 此模型源侧部分采用光伏发电系统与混合储能系统&#xff08;蓄电池超级电容&#xff09;&#xff0c;并网逆变器采用虚拟同步发电机&#xff08;VSG&#xff09;控制&#xff0c;为系统提供惯量阻尼…

Numpy基础01

目录 1.array创建对象 1.1定义一维数组 1.2定义二维数组 2.Numpy的数据类型 3.数据类型标识码 4.array的API 4.1astype() 4.2max() 4.3min() 4.4sum() 4.5reshape() 4.6random.rand() 5.数组属性 5.1ndim 5.2shape 5.3itemsize 5.4flags 6.创建数组方法 6.1a…

VScode远程服务器之远程容器进行开发(四)

VScode远程服务器之远程容器进行开发(四) Remote-Containers 可以让vscode使用docker中的容器环境进行开发和debug。 1. 使用一个运行中的容器进行开发 - Attach to running container 如果正好有一个正在运行的容器。可能是正在运行的服务,或者是预先build好的开发镜像…

2024.10.9华为留学生笔试题解

第一题无线基站名字相似度 动态规划 考虑用动态规划解决 char1=input().strip() char2=input().strip() n,m=len(char1),len(char2) dp=[[0]*(m+1) for _ in range(n+1)] #dp[i][j]定义为以i-1为结尾的char1 和以 j-1为结尾的char2 的最短编辑距离 setA = set(wirel@com) set…

初识Java GUI 编程

文章目录 前言一、什么是 GUI 编程&#xff1f;二、Java GUI 编程的基础组件1. JFrame2.JButton3. JLabel提示 三、布局管理器结语 前言 在当今的软件开发领域&#xff0c;图形用户界面&#xff08;GUI&#xff09;的重要性不言而喻。它为用户提供了直观、友好的交互方式&…

MySQL初阶——隔离级别之Read view

一、什么是快照&#xff1f; 当运行 select 查询语句时&#xff0c;才会触发快照&#xff0c;创建 read view 对象&#xff0c;把此时正在处理&#xff08;未提交&#xff09;的事务的 ID 都记下来&#xff0c;以便于后面查询时可以控制该读哪些事务的记录&#xff0c;不该读哪…

基于Multisim8路彩灯循环控制电路设计与仿真

1&#xff0e;彩灯能够自动循环点亮&#xff1b; 2&#xff0e;彩灯循环频率快慢可调&#xff1b; 3&#xff0e;彩灯具有8路输出。 4&#xff0e;自行设计脉冲信号产生电路。 链接&#xff1a;https://pan.baidu.com/s/1PhpVy58Y6-_uXnie8KYyzg 提取码&#xff1a;zjad

数学建模2:回归分析预测

回归模型是什么 回归分析预测模型是一种统计方法&#xff0c;用于研究变量之间的关系&#xff0c;并通过已知数据来预测一个变量的值。回归分析通常包括自变量和因变量&#xff0c;目标是建立一个回归模型来描述它们之间的关系。 简单来说回归模型就是找出一条直线或曲线来尽可…

若依框架的下载与配置

1. 若依版本 RuoYi-Vue前后端分离版。 2. 框架下载 2.1 后端框架下载 https://gitee.com/y_project/RuoYi-Vue 2.2 前端框架下载 https://github.com/yangzongzhuan/RuoYi-Vue3 3. 数据库配置 3.1 创建数据库 基于MySQL数据库&#xff0c;创建数据库&#xff1a;ry-vu…

【Eclipse系列】The word is not correctly spelled问题解决

问题描述&#xff1a;在eclipse编写代码时&#xff0c;偶尔会出现了The word is not correctly spelled的错误&#xff0c;但代码执行没有问题&#xff0c;查阅相关资料才发现是eclipse的拼写检查问题。 处理方法&#xff1a;在eclipse下的Window--Preference输入spelling&am…

【软件测试: jmeter工具】OS进程取样器调用python

在jmeter中有时候需要调用自定义函数进行加密、解密等拓展功能 本文通过识别验证码处理登录验证码为例&#xff0c;通过OS进程取样器&#xff0c;调用python函数实现 识别验证码的python函数源码 import base64 from io import BytesIO from PIL import Image import sys im…

nginx中的HTTP 负载均衡

HTTP 负载均衡&#xff1a;如何实现多台服务器的高效分发 为了让流量均匀分配到两台或多台 HTTP 服务器上&#xff0c;我们可以通过 NGINX 的 upstream 代码块实现负载均衡。 方法 在 NGINX 的 HTTP 模块内使用 upstream 代码块对 HTTP 服务器实施负载均衡&#xff1a; upstr…

OpenVLA-首个开源视觉语言动作大模型

官网&#xff1a;https://openvla.github.io/ 现在大模型已经卷到了机器人领域。 在视觉语言模型&#xff08;VLM&#xff09;的基础上&#xff0c; 加入机器人的动作&#xff08;Action) 这一模态&#xff0c; 视觉语言动作大模型&#xff08;VLA&#xff09;是目前大模型应用…

网络知识总结

osi七层模型 osi七层模型分为&#xff1a;应用层&#xff0c;表示层&#xff0c;会话层&#xff0c;传输层&#xff0c;网络层&#xff0c;数据链路层&#xff0c;物理层 应用层&#xff1a;客户端与服务端之间建立一个通话界面表示层&#xff1a;对数据进行语言转换&#xf…

Android Framework AMS(06)startActivity分析-3(补充:onPause和onStop相关流程解读)

该系列文章总纲链接&#xff1a;专题总纲目录 Android Framework 总纲 本章关键点总结 & 说明&#xff1a; 说明&#xff1a;本章节主要解读AMS通过startActivity启动Activity的整个流程的补充&#xff0c;更新了startActivity流程分析部分。 一般来说&#xff0c;有Activ…

基于Springboot在线视频网站的设计与实现

基于Springboot视频网站的设计与实现 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;idea 源码获取&#xff1a;https://do…