文章目录
- 链表
- python实现
- 双向链表
- 复杂度分析
- 哈希表(散列表)
- python实现哈希表
- 哈希表的应用
链表
python实现
class Node:
def __init__(self, item):
self.item = item
self.next = None
def head_create_linklist(li):
head = Node(li[0])
for element in li[1:]:
node = Node(element)
node.next = head
head = node
return head
def tail_create_linklist(li):
head = Node(li[0])
tail = head
for element in li[1:]:
node = Node(element)
tail.next = node
tail = node
return head
def print_linklist(lk):
while lk:
print(lk.item, end=',')
lk = lk.next
print()
a = head_create_linklist([1, 2, 3, 4, 5, 6, 7, 8])
b = tail_create_linklist([1, 2, 3, 4, 5, 6, 7, 8])
print_linklist(a)
print_linklist(b)
双向链表
复杂度分析
哈希表(散列表)
python实现哈希表
class LinkList:
class Node:
def __init__(self, item=None):
self.item = item
self.next = None
class LinkListIterator:
def __init__(self, node):
self.node = node
def __next__(self):
if self.node:
cur_node = self.node
self.node = cur_node.next
return cur_node.item
else:
raise StopIteration
def __iter__(self):
return self
def __init__(self, iterable=None):
self.head = None
self.tail = None
if iterable:
self.extend(iterable)
def append(self, obj):
s = LinkList.Node(obj)
if not self.head:
self.head = s
self.tail = s
else:
self.tail.next = s
self.tail = s
def extend(self, iterable):
for obj in iterable:
self.append(obj)
def find(self, obj):
for n in self:
if n == obj:
return True
else:
return False
def __iter__(self):
return self.LinkListIterator(self.head)
def __repr__(self):
return "<<" + ", ".join(map(str, self)) + ">>"
# 类似于集合的结构
class HashTable:
def __init__(self, size=101):
self.size = size
self.T = [LinkList() for i in range(self.size)]
def h(self, k):
return k % self.size
def insert(self, k):
i = self.h(k)
if self.find(k):
print("Duplicated Insert.")
else:
self.T[i].append(k)
def find(self, k):
i = self.h(k)
return self.T[i].find(k)
ht = HashTable()
ht.insert(0)
ht.insert(1)
ht.insert(3)
ht.insert(102)
ht.insert(508)
ht.insert(19)
ht.insert(56)
ht.insert(96)
print(",".join(map(str, ht.T)))
print(ht.find(203))
哈希表的应用
若有错误与不足请指出,关注DPT一起进步吧!!!