03 设计模式-创造型模式-单例模式

news2025/1/20 5:54:51

单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。

单例模式是一种创建型设计模式,它确保一个类只有一个实例,并提供了一个全局访问点来访问该实例。

注意:

  • 1、单例类只能有一个实例。
  • 2、单例类必须自己创建自己的唯一实例。
  • 3、单例类必须给所有其他对象提供这一实例。

设计模式,最近持续更新中,如需要请关注

如果你觉得我分享的内容或者我的努力对你有帮助,或者你只是想表达对我的支持和鼓励,请考虑给我点赞、评论、收藏。您的鼓励是我前进的动力,让我感到非常感激。

文章目录

  • 1 概要
  • 2 实现
  • 3 Demo代码
    • 3.1 懒汉式,线程不安全
    • 3.2 懒汉式,线程安全
    • 3.3 饿汉式
    • 3.4 双检锁/双重校验锁(DCL,即 double-checked locking)
    • 3.5 登记式/静态内部类
    • 3.6 枚举
  • 4 开发案例

1 概要

意图
确保一个类只有一个实例,并提供一个全局访问点来访问该实例。

主要解决
频繁创建和销毁全局使用的类实例的问题。

何时使用
当需要控制实例数目,节省系统资源时。

如何解决
检查系统是否已经存在该单例,如果存在则返回该实例;如果不存在则创建一个新实例。

关键代码
构造函数是私有的。

应用实例

  • 一个班级只有一个班主任。
  • Windows 在多进程多线程环境下操作文件时,避免多个进程或线程同时操作一个文件,需要通过唯一实例进行处理。
  • 设备管理器设计为单例模式,例如电脑有两台打印机,避免同时打印同一个文件。

优点

  • 内存中只有一个实例,减少内存开销,尤其是频繁创建和销毁实例时(如管理学院首页页面缓存)。
  • 避免资源的多重占用(如写文件操作)。

缺点

  • 没有接口,不能继承。
  • 与单一职责原则冲突,一个类应该只关心内部逻辑,而不关心实例化方式。
    使用场景
  • 生成唯一序列号。
  • WEB 中的计数器,避免每次刷新都在数据库中增加计数,先缓存起来。
  • 创建消耗资源过多的对象,如 I/O 与数据库连接等。

注意事项

  • 线程安全: getInstance() 方法中需要使用同步锁 synchronized (Singleton.class) 防止多线程同时进入造成实例被多次创建。
  • 延迟初始化: 实例在第一次调用 getInstance() 方法时创建。
  • 序列化和反序列化: 重写 readResolve 方法以确保反序列化时不会创建新的实例。
  • 反射攻击: 在构造函数中添加防护代码,防止通过反射创建新实例。
  • 类加载器问题: 注意复杂类加载环境可能导致的多个实例问题。

结构
单例模式包含以下几个主要角色:

  • 单例类: 包含单例实例的类,通常将构造函数声明为私有。
  • 静态成员变量: 用于存储单例实例的静态成员变量。
  • 获取实例方法: 静态方法,用于获取单例实例。
  • 私有构造函数: 防止外部直接实例化单例类。
  • 线程安全处理: 确保在多线程环境下单例实例的创建是安全的。

2 实现

我们将创建一个 SingleObject 类。SingleObject 类有它的私有构造函数和本身的一个静态实例。

SingleObject 类提供了一个静态方法,供外界获取它的静态实例。SingletonPatternDemo 类使用 SingleObject 类来获取 SingleObject 对象。

在这里插入图片描述
创建一个 Singleton 类。

public class SingleObject {
 
   //创建 SingleObject 的一个对象
   private static SingleObject instance = new SingleObject();
 
   //让构造函数为 private,这样该类就不会被实例化
   private SingleObject(){}
 
   //获取唯一可用的对象
   public static SingleObject getInstance(){
      return instance;
   }
 
   public void showMessage(){
      System.out.println("Hello World!");
   }
}

从 singleton 类获取唯一的对象。

public class SingletonPatternDemo {
   public static void main(String[] args) {
 
      //不合法的构造函数
      //编译时错误:构造函数 SingleObject() 是不可见的
      //SingleObject object = new SingleObject();
 
      //获取唯一可用的对象
      SingleObject object = SingleObject.getInstance();
 
      //显示消息
      object.showMessage();
   }
}

3 Demo代码

3.1 懒汉式,线程不安全

/*
1、懒汉式,线程不安全
是否 Lazy 初始化:是

是否多线程安全:否

实现难度:易

描述:这种方式是最基本的实现方式,这种实现最大的问题就是不支持多线程。因为没有加锁 synchronized,所以严格意义上它并不算单例模式。
这种方式 lazy loading 很明显,不要求线程安全,在多线程不能正常工作。
 */
public class Singleton_1 {
    private static Singleton_1 instance;

    private Singleton_1() {
    }

    public static Singleton_1 getInstance() {
        if (instance == null) {
            instance = new Singleton_1();
        }
        return instance;
    }
}

接下来介绍的几种实现方式都支持多线程,但是在性能上有所差异。

3.2 懒汉式,线程安全

/*
2、懒汉式,线程安全
是否 Lazy 初始化:是

是否多线程安全:是

实现难度:易

描述:这种方式具备很好的 lazy loading,能够在多线程中很好的工作,但是,效率很低,99% 情况下不需要同步。
优点:第一次调用才初始化,避免内存浪费。
缺点:必须加锁 synchronized 才能保证单例,但加锁会影响效率。
getInstance() 的性能对应用程序不是很关键(该方法使用不太频繁)。
 */
public class Singleton_2 {
    private static Singleton_2 instance;

    private Singleton_2() {
    }

    public static synchronized Singleton_2 getInstance() {
        if (instance == null) {
            instance = new Singleton_2();
        }
        return instance;
    }
}

3.3 饿汉式

/*
3、饿汉式
是否 Lazy 初始化:否

是否多线程安全:是

实现难度:易

描述:这种方式比较常用,但容易产生垃圾对象。
优点:没有加锁,执行效率会提高。
缺点:类加载时就初始化,浪费内存。
它基于 classloader 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,虽然导致类装载的原因有很多种,在单例模式中大多数都是调用 getInstance 方法, 但是也不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 显然没有达到 lazy loading 的效果。
 */
public class Singleton_3 {
    private static Singleton_3 instance = new Singleton_3();

    private Singleton_3() {
    }

    public static Singleton_3 getInstance() {
        return instance;
    }
}

3.4 双检锁/双重校验锁(DCL,即 double-checked locking)

/*
4、双检锁/双重校验锁(DCL,即 double-checked locking)
JDK 版本:JDK1.5 起

是否 Lazy 初始化:是

是否多线程安全:是

实现难度:较复杂

描述:这种方式采用双锁机制,安全且在多线程情况下能保持高性能。
getInstance() 的性能对应用程序很关键。
 */
public class Singleton_4 {
    private volatile static Singleton_4 singleton;

    private Singleton_4() {
    }

    public static Singleton_4 getSingleton() {
        if (singleton == null) {
            synchronized (Singleton_4.class) {
                if (singleton == null) {
                    singleton = new Singleton_4();
                }
            }
        }
        return singleton;
    }
}

3.5 登记式/静态内部类

/*
5、登记式/静态内部类
是否 Lazy 初始化:是

是否多线程安全:是

实现难度:一般

描述:这种方式能达到双检锁方式一样的功效,但实现更简单。对静态域使用延迟初始化,应使用这种方式而不是双检锁方式。这种方式只适用于静态域的情况,双检锁方式可在实例域需要延迟初始化时使用。
这种方式同样利用了 classloader 机制来保证初始化 instance 时只有一个线程,它跟第 3 种方式不同的是:第 3 种方式只要 Singleton 类被装载了,那么 instance 就会被实例化(没有达到 lazy loading 效果),而这种方式是 Singleton 类被装载了,instance 不一定被初始化。因为 SingletonHolder 类没有被主动使用,只有通过显式调用 getInstance 方法时,才会显式装载 SingletonHolder 类,从而实例化 instance。想象一下,如果实例化 instance 很消耗资源,所以想让它延迟加载,另外一方面,又不希望在 Singleton 类加载时就实例化,因为不能确保 Singleton 类还可能在其他的地方被主动使用从而被加载,那么这个时候实例化 instance 显然是不合适的。这个时候,这种方式相比第 3 种方式就显得很合理。
 */
public class Singleton_5 {
    private static class SingletonHolder {
        private static final Singleton_5 INSTANCE = new Singleton_5();
    }

    private Singleton_5() {
    }

    public static final Singleton_5 getInstance() {
        return SingletonHolder.INSTANCE;
    }
}

3.6 枚举

/*
6、枚举
JDK 版本:JDK1.5 起

是否 Lazy 初始化:否

是否多线程安全:是

实现难度:易

描述:这种实现方式还没有被广泛采用,但这是实现单例模式的最佳方法。它更简洁,自动支持序列化机制,绝对防止多次实例化。
这种方式是 Effective Java 作者 Josh Bloch 提倡的方式,它不仅能避免多线程同步问题,而且还自动支持序列化机制,防止反序列化重新创建新的对象,绝对防止多次实例化。不过,由于 JDK1.5 之后才加入 enum 特性,用这种方式写不免让人感觉生疏,在实际工作中,也很少用。
不能通过 reflection attack 来调用私有构造方法。
 */
public enum  Singleton_6 {
    INSTANCE;
    public void whateverMethod() {
        System.out.println("whateverMethod");
    }
}

4 开发案例

算法执行服务创建hdfs连接,使用的单例模式,初始化一下

public class HdfsConnection {
    private static final Logger LOGGER = LoggerFactory.getLogger(HdfsConnection.class);

    private static HdfsConnection instance;

    /**
     * Gets instance.
     *
     * @return the instance
     */
    public static synchronized HdfsConnection getInstance(String installScenarios) {
        if (instance != null) {
            return instance;
        }
        return instance = new HdfsConnection(installScenarios);
    }

    private FileSystem fs;

    private HdfsConnection(String installScenarios) {
        LOGGER.info("Init HDFS Connection start!");
        // 读取配置
        HdfsConfig hdfsConfig = ReadHdfsConfig.getHdfsConfig(installScenarios);
        LOGGER.info("hdfsConfig: {} ", JSON.toJSONString(hdfsConfig));
        if (Objects.isNull(hdfsConfig)) {
            LOGGER.error("HdfsConfig is null");
            throw new CommonServiceException(AIModelError.HDFS_EXCEPTION);
        }

        // 设置配置
        Configuration conf = new Configuration();
        LOGGER.info("conf: {} ", JSON.toJSONString(conf));
        UserGroupInformation.setConfiguration(conf);

        // 初始化文件系统连接
        try {
            UserGroupInformation.loginUserFromKeytab(hdfsConfig.getOssuser(), hdfsConfig.getOssuserKeytab());
            fs = FileSystem.get(conf);
        } catch (Exception exp) {
            LOGGER.error("Init HDFS Connection failure!");
            throw new CommonServiceException(AIModelError.HDFS_EXCEPTION, exp);
        }
        LOGGER.info("Init HDFS Connection Success!");
    }

    /**
     * Gets hadoop fs.
     *
     * @return the hadoop fs
     */
    public FileSystem getHadoopFs() {
        return fs;
    }
}

使用

    public boolean upload(String localFile, String hdfsPath) {
        try {
            mkParentDir(hdfsPath);
            FileSystem fs = HdfsConnection.getInstance(installScenarios).getHadoopFs();
            fs.copyFromLocalFile(new Path(localFile), new Path(hdfsPath));
            LOGGER.info("upload file success!");
            return true;
        } catch (Exception exp) {
            LOGGER.error("upload file failure!");
            throw new CommonServiceException(AIModelError.HDFS_EXCEPTION, exp);
        }
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2218249.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言复习第4章 数组

目录 一、一维数组的创建和初始化1.1数组的创建1.2 变长数组1.3 数组的初始化1.4 全局数组默认初始化为01.5 区分两种字符数组1.6 用sizeof计算数组元素个数1.7 如何访问数组元素1.8 一维数组在内存中的存储(连续存储)1.9 访问数组元素的另一种方式:指针变量1.10 数组越界是运行…

【AI绘画】Midjourney进阶:引导线构图详解

博客主页: [小ᶻZ࿆] 本文专栏: AI绘画 | Midjourney 文章目录 💯前言💯什么是构图为什么Midjourney要使用构图 💯引导线构图特点使用场景提示词书写技巧测试 💯小结 💯前言 【AI绘画】Midjourney进阶&a…

AnaTraf | TCP重传的工作原理与优化方法

目录 什么是TCP重传? TCP重传的常见触发原因 TCP重传对网络性能的影响 1. 高延迟与重传 2. 吞吐量的下降 如何优化和减少TCP重传 1. 优化网络设备配置 2. 优化网络链路 3. 网络带宽的合理规划 4. 部署CDN和缓存策略 结语 AnaTraf 网络性能监控系统NPM | …

网络最快的速度光速,因此‘‘光网络‘‘由此产生

世界上有一种最快的速度又是光,以前传统以太网络规划满足不了现在的需求。 一 有线网规划 二 无线网规划

如何用pyhton修改1000+图片的名字?

import os oldpath input("请输入文件路径(在windows中复制那个图片文件夹的路径就可以):") #注意window系统中的路径用这个‘\分割,但是编程语言中一般都是正斜杠也就是’/‘ #这里写一个代码,将 \ > / path "" fo…

嵌入式职业规划

嵌入式职业规划 在嵌入式的软件开发中,可以分为: 嵌入式MCU软件开发工程师; 嵌入式Linux底层(BSP)软件开发工程师; 嵌入式Linux应用开发工程师; 嵌入式FPGA算法开发工程师 对于前两个阶段 …

H.266与H.265、AV1、H.264对比

好多开发者希望搞清楚H.266(Versatile Video Coding,VVC)、H.265(High Efficiency Video Coding,HEVC)、AV1、H.264(Advanced Video Coding)四者区别,本文从压缩效率、画…

代码随想录算法训练营第三十八天 | 62. 不同路径、63. 不同路径 II、343. 整数拆分、96.不同的二叉搜索树(343、96以后学)

1. 题目: 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路…

提高EDM广告发送率和到达率_实用技巧揭秘

EDM广告提高发送率和到达率策略包括优化邮件服务器设置、制定邮件内容及设计策略、持续监测与测试。ZohoCampaigns通过可靠ESP、SPF和DKIM验证、维护IP声誉确保高发送率和到达率。 一、了解EDM的发送率和到达率概念 在深入研究提升策略之前,首先我们需要明确两个专…

2-126基于matlab希尔伯特黄变换(HHT)的图像三维重建

基于matlab希尔伯特黄变换(HHT)的图像三维重建,利用希尔伯特黄变换(HHT)的条纹图相位信息提取算法,对输入图片的变形条纹图相位信息进行提取,实现三维重建。程序已调通,可直接运行。…

Axure重要元件三——中继器时间排序

亲爱的小伙伴,在您浏览之前,烦请关注一下,在此深表感谢! 本节课:中继器数据时间排序 课程内容:数据的升序、降序、重置排序 应用场景:表单数据的排序 案例展示: 步骤一&#xff…

【数据分享】1901-2023年我国省市县三级逐月最低气温(免费获取/Shp/Excel格式)

之前我们分享过1901-2023年1km分辨率逐月最低气温栅格数据(可查看之前的文章获悉详情),该数据来源于国家青藏高原科学数据中心,很多小伙伴拿到数据后反馈栅格数据不太方便使用,问我们能不能把数据处理为更方便使用的Sh…

0基础学java之Day09(下午完整版)

六、数组 概念: 1.数组是引用数据类型 2.数组中的数据叫做元素 3.元素都有标号叫做索引/下标 4.下标从0开始 5.数组一旦初始化成功,长度不可变(意味着数组没有添加和删除) 6.数组中的元素在内存中是挨在一起的 声明: 数…

CTF(四)

导言: 本文主要讲述在CTF竞赛中,web类题目file_include。 靶场链接:攻防世界 (xctf.org.cn) 一,观察页面。 可以看到一段php代码。从则段代码中我们可以知道: 1,使用include引入check.php文件&#xff…

Excel制作工资表

需要用到的函数 函数要求如下: IFERROR 功能:处理公式中的错误,避免显示错误值。当公式产生错误时,使用自定义的值或表达式代替错误信息。 IFERROR(值, 错误值)SUM 功能:求和,计算一系列数字的总和。 语…

SSD |(七)FTL详解(中)

文章目录 📚垃圾回收🐇垃圾回收原理🐇写放大🐇垃圾回收实现🐇垃圾回收时机 📚解除映射关系📚磨损均衡 📚垃圾回收 🐇垃圾回收原理 ✋设定一个迷你SSD空间: 假…

Windows 和 Ubuntu通讯的网络设置

如果你是一个嵌入式工程师,因为工作需要,在linux下进行开发,一定会遇见配网问题。这篇文章解决Windows 和虚拟机Ubuntu通讯的网络设置的问题。 Windows的网络配置: 在配置网络前,先了解一下windows和ubuntu的网络构成…

CTFHUB技能树之SQL——过滤空格

开启靶场,打开链接: 既然是过滤空格,绕过空格的方法: 用/**/或%0a替代空格 (1)判断注入点 1 and 11# 会显示hacker 1/**/and/**/11# 有回显 1/**/and/**/12# 无回显,说明是整数型注入 &#…

嵌入式C++中内存分配基本实现方法

大家好,今天主要给大家分享一下,如何使用计算机中的内存空间进行分配,观察具体现象。 第一:C语言动态空间分配方式 第二:C++中动态内存分配方法 new 可以自动计算数据类型的大小 与 类型的转换 malloc 只能手动进行。 2.new 可以在分配空间的时候初始化 malloc 不行。 第三…

python采集汽车之家数据

python采集汽车之家数据 一、寻找数据接口二、发送请求获取响应三、解析数据四、完整代码一、寻找数据接口 如下图所示,在汽车之家首页点击报价图标: 在下图中选择价位,例如选择15-20万: 打开浏览器开发者工具,刷新页面,找到数据接口。接下来,通过翻页寻找接口url的变…