机器学习:opencv--人脸检测以及微笑检测

news2025/1/9 16:12:06

目录

前言

一、人脸检测的原理

1.特征提取

2.分类器

二、代码实现

1.图片预处理

2.加载分类器

3.进行人脸识别

4.标注人脸及显示

三、微笑检测


前言

        人脸检测是计算机视觉中的一个重要任务,旨在自动识别图像或视频中的人脸。它可以用于多种应用,如安全监控、身份验证、人机交互等。

 

一、人脸检测的原理

1.特征提取

  • Haar特征

    • 基于Haar小波变换,通过简单的矩形特征(如眼睛、鼻子、嘴巴的对比)来识别图像中的人脸。
    • Haar特征计算速度快,适合实时应用。

 

2.分类器

        这里使用的是python自带的库的分类器模型,是一种级联分类器

  • 分类器需要对图像的多个特征进行识别。
  1. 例如,在识别一个动物是狗(正类)还是其他动物(负类)时,直接根据多个条件进行判断,流程是非常烦琐的。
  2. 如果先判断该动物有几条腿。有四条腿的动物被判断为可能为狗,并对此范围内的对象继续进行分析和判断。
  3. 没有四条腿的动物直接被否决,即不可能是狗。
  4. 只通过比较腿的数目就能排除样本集中大量的负类(如鸡、鸭、鹅等不是狗的动物的实例)。
  5. 级联分类器就是基于这种思路将多个简单的分类器按照一定的顺序级联而成的。

 

二、代码实现

1.图片预处理

import cv2

image = cv2.imread('quanjiafu2.jpg')
image = cv2.resize(image, None, fx=0.4, fy=0.4)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 

2.加载分类器

"""-----------------加载分类器----------------"""
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

 

3.进行人脸识别

"""------------------- 分类器检测实现人脸识别--------------"""
# objects = cv2.CascadeClassifier,detectMultiscale( imagel, scaleFactor[,minNeighbors[,flags[,minsize[, maxsize]]]]])
# 其中,各个参数及返回值的含义如下:
# image:待检测图像,通常为灰度图像。
# scaleFactor:表示在前后两次相继扫描中搜索窗口的缩放比例。识别,扫描,按照不同比例来进行扫描
# minNeighbors:表示构成检测目标的相邻矩形的最小个数。在默认情况下,该参数的值为 3,
#           表示有 3 个以上的检测标记存在时才认为存在人脸。如果希望提高检测的准确率可以将该参数的值设置得更大。
#           但这样做可能会让一些人脸无法被检测到。
# flags: 该参数通常被省略。在使用低版本 OpencV(opencV 1.X 版本)时,该参数可能会被设置为
# CV_HAAR_DO_CANNY_PRUNING,表示使用 Canny 边缘检测器拒绝一些区域。
# minSize:目标的最小尺寸,小于这个尺寸的目标将被忽略。
# maxSize: 目标的最大尺寸,大于这个尺寸的目标将被忽略。通常情况下,将该可选参数省略即可
#           若 maxsize 和 minsize 大小一致,则表示仅在一个尺度上食找目标。
# objects: 返回值. 目标对象的矩形框向量组。该值是一组矩形信息.
#           包含每个检测到的人脸对应的矩形框的信息(x轴方向位置、y轴方向位置、宽度、高度)

faces = faceCascade.detectMultiScale(gray, scaleFactor=1.05, minNeighbors=5, minSize=(8, 8))
print("发现{0}张人脸!".format(len(faces)))
print("其位置分别是:", faces)

 

4.标注人脸及显示

"""---------------标注人脸及显示------------------"""
for (x, y, w, h) in faces:
    cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imshow('result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

 

三、微笑检测

  • 微笑检测是在人脸检测的基础上进行的
    1. 加载微笑检测分类器
    2. 打开摄像头
    3. 检测一帧图片
    4. 进行人脸检测
    5. 提取出每张人脸所在的矩形区域
    6. 对该矩形区域进行微笑检测
    7. 微笑时,在矩形框的左上角表上smile
    8. 按下esc结束
import cv2

faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
smile = cv2.CascadeClassifier('haarcascade_smile.xml')

cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    frame = cv2.flip(frame, 1)  # 图片翻转 水平翻转
    if not ret:
        break
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    faces = faceCascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=10, minSize=(5, 5))

    """--------处理每张人脸-------"""
    for (x, y, w, h) in faces:
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        # 提取人脸所在区域 多通道形式
        # roiColorFace = frame[y:y+h,x:x+w]
        # 单通道形式
        roi_gray_face = gray[y:y + h, x:x + w]
        # 微笑检测
        smiles = smile.detectMultiScale(roi_gray_face, scaleFactor=1.5, minNeighbors=10, minSize=(50, 50))

        for (sx, sy, sw, sh) in smiles:
            cv2.putText(frame, "smile", (x, y), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 255), 2)

    cv2.imshow('result', frame)
    a = cv2.waitKey(100)
    if a == 27:
        break

print(frame.shape)
# 释放摄像头赟源
cap.release()
# 关闭所有openCV创建的窗口
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2216012.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】- STL之vector模拟实现

1.vector的介绍 vector是表示可变大小数组的序列容器。vector采用的连续存储空间来存储元素。意味着也可以采用下标对vector的元素进行访问,和数组一样高效。但是它的大小是可以动态改变的,而且它的大小会被容器自动处理。vector使用动态分配数组来存储它…

三子棋(C 语言)

目录 一、游戏设计的整体思路二、各个步骤的代码实现1. 菜单及循环选择的实现2. 棋盘的初始化和显示3. 轮流下棋及结果判断实现4. 结果判断实现 三、所有代码四、总结 一、游戏设计的整体思路 (1)提供一个菜单让玩家选择人机对战、玩家对战或者退出游戏…

企业电子印章主要通过以下几种方式进行防伪

企业电子印章主要通过以下几种方式进行防伪: 一、数字证书和加密技术 数字证书认证 企业电子印章依托数字证书,数字证书由权威的第三方数字认证机构颁发,确保了印章使用者的身份真实性。 数字证书如同企业在数字世界的身份证,包…

Python 工具库每日推荐 【sqlparse】

文章目录 引言SQL解析工具的重要性今日推荐:sqlparse工具库主要功能:使用场景:安装与配置快速上手示例代码代码解释实际应用案例案例:SQL查询分析器案例分析高级特性自定义格式化处理多个语句扩展阅读与资源优缺点分析优点:缺点:总结【 已更新完 Python工具库每日推荐 专…

SpringCloud-持久层框架MyBatis Plus的使用与原理详解

在现代微服务架构中,SpringCloud 是一个非常流行的解决方案。而在数据库操作层面,MyBatis Plus 作为 MyBatis 的增强工具,能够简化开发,提升效率,特别是在开发企业级应用和分布式系统时尤为有用。本文将详细介绍 MyBat…

我们是不是有点神话了OPENAI和CHATGPT?OPENAI真的Open?

网上很多人大力推荐和神化OPENAI的CHATGPT等产品,好像这神器无所不能!也不知道是VPN代理商为了给自己做广告?还是CHATGPT注册代理推销产品?或者有可能是国外宣传CHATGPT文章直接翻译过来的?不可否认CHATGPT确实是一款伟大的产品,但有些情况…

HarmonyOS的DevEcoStudio安装以及初步认识

目录 1.DevEco下载 2.DevEco安装 3. 未开启Hyper-V 1--开启Hyper-v流程 4.编译错误 5.目录结构 1)AppScope 2)entry: 3)build 4)entry->src 5)entry->src->main->etc 6)entry->src->main…

Shell编程-if和else

作者介绍:简历上没有一个精通的运维工程师。希望大家多多关注作者,下面的思维导图也是预计更新的内容和当前进度(不定时更新)。 我们前面学习了那么多命令,以及涉及到部分逻辑判断的问题。从简单来说,他就是Shell编程,…

一键快捷回复软件助力客服高效沟通

双十一临近,电商大战一触即发!在这个购物狂欢的热潮中,客服团队的效率至关重要。今天我要和大家分享一个非常实用的快捷回复软件,特别是为电商客服小伙伴们准备的。这款软件能够极大地提高你的工作效率,让你在处理客户…

小程序开发设计-模板与配置:WXML模板语法⑨

上一篇文章导航: 小程序开发设计-协同工作和发布:协同工作⑧-CSDN博客https://blog.csdn.net/qq_60872637/article/details/142455703?spm1001.2014.3001.5501 注:不同版本选项有所不同,并无大碍。 目录 上一篇文章导航&…

OpenAI 公布了其新 o1 模型家族的元提示(meta-prompt)

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

开发板资源介绍【STM32MP157 学习笔记】

引言 FS-MP1A 开发板是基于 ST(意法半导体)公司的 STM32MP1 系列微处理器设计的先进开发板。该系列处理器集成了 Arm Cortex-A7 和 Cortex-M4 两种内核的异构架构,在高性能和灵活性的基础上,保证了低功耗、实时控制和高度集成化。…

阿里 C++面试,算法题没做出来,,,

我本人是非科班学 C 后端和嵌入式的。在我面试的过程中,竟然得到了阿里​ C 研发工程师的面试机会。因为,阿里主要是用 Java 比较多,C 的岗位比较少​,所以感觉这个机会还是挺难得的。 阿里 C 研发工程师面试考了我一道类似于快速…

深度学习-22-基于keras的十大经典算法之深度神经网络DNN

文章目录 1 深度神经网络(DNN)1.1 DNN简介1.2 DNN基本结构2 模拟应用2.1 构建模型2.2 训练模型2.3 模型预测3 鸢尾花数据集3.1 加载数据3.2 构建模型3.3 训练模型3.4 模型预测4 问题及解决5 参考附录1 深度神经网络(DNN) 1.1 DNN简介 背景:深度神经网络(DNN)也叫多层感…

歌曲怎么去掉原唱只留伴奏?创作无界,轻松获取伴奏音轨

在音乐制作、翻唱或是卡拉OK等场合,我们经常需要歌曲的伴奏版本,即去掉原唱声音,只保留背景音乐的部分。然而,并非每首歌曲都会官方发布伴奏版本,这时我们就需要借助一些技术手段来实现这一目标。本文将介绍几种常见的…

linux线程 | 同步与互斥(上)

前言:本节内容主要是线程的同步与互斥。 本篇文章的主要内容都在讲解互斥的相关以及周边的知识。大体的讲解思路是通过数据不一致问题引出锁。 然后谈锁的使用以及申请锁释放锁的原子性问题。 那么, 废话不多说, 现在开始我们的学习吧&#x…

使用OpenCV实现基于EigenFaces的人脸识别

引言 人脸识别技术近年来得到了飞速的发展,它被广泛应用于安全监控、门禁系统、智能设备等领域。其中,基于特征脸(EigenFaces)的方法是最早期且较为经典的人脸识别算法之一。本文将介绍如何使用Python和OpenCV库实现一个简单的人…

【LeetCode】每日一题 2024_10_15 三角形的最大高度(枚举、模拟)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动! 题目:三角形的最大高度 代码与解题思路 久违的简单题 这道题读完题目其实不难想到有两条路可以走: 1、题目很明显只有两种情况,枚举是第一个球是红球还是蓝球这两种情…

导数的概念及在模型算法中的应用

一. 导数概念与计算 1. 导数的物理意义: 瞬时速率。一般的,函数yf(x)在x处的瞬时变化率是 2. 导数的几何意义: 曲线的切线,当点趋近于P时,直线 PT 与曲线相切。容易知道,割线的斜率是当点趋近于 P 时&…

UE5学习笔记25-游戏中时间同步

一、原因 1.由于网络问题会导致服务器上的时间和客户端上获得的时间不一致 二、解决方法 在程序启动时向服务器请求服务器的时间返回给客户端并获得客户端发送消息的往返的时间,在获得客户端上的时间,用服务器上获得的时间加上往返时间减去客户端上的时…