RNN心脏病预测

news2025/1/17 22:04:43

本文为为🔗365天深度学习训练营内部文章

原作者:K同学啊

 一 前期准备

1.数据导入

import pandas as pd
from keras.optimizers import Adam
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense,SimpleRNN
import warnings
warnings.filterwarnings('ignore')

df = pd.read_csv('heart.csv')

2.检查数据 

查看是否有空值

print(df.shape)
print(df.isnull().sum())
(303, 14)
age         0
sex         0
cp          0
trestbps    0
chol        0
fbs         0
restecg     0
thalach     0
exang       0
oldpeak     0
slope       0
ca          0
thal        0
target      0
dtype: int64

二 数据预处理 

1.拆分训练集 

X = df.iloc[:,:-1]
y = df.iloc[:,-1]

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.1,random_state=14)

2.数据标准化 

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)
X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],1)
X_test = X_test.reshape(X_test.shape[0],X_test.shape[1],1)
array([[[ 1.44626869],
        [ 0.54006172],
        [ 0.62321699],
        [ 1.37686599],
        [ 0.83801861],
        [-0.48989795],
        [ 0.92069654],
        [-1.38834656],
        [ 1.34839972],
        [ 1.83944021],
        [-0.74161985],
        [ 0.18805174],
        [ 1.09773445]],

       [[-0.11901962],
        [ 0.54006172],
        [ 1.4632051 ],
        [-0.7179976 ],
        [-1.01585167],
        [-0.48989795],
        [-0.86315301],
        [ 0.77440436],
        [-0.74161985],
        [ 0.85288923],
        [-0.74161985],
        [-0.78354893],
        [ 1.09773445]],

 三 构建RNN模型

model = Sequential()
model.add(SimpleRNN(200,input_shape=(X_train.shape[1],1),activation='relu'))
model.add(Dense(100,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.summary()
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 simple_rnn (SimpleRNN)      (None, 200)               40400     
                                                                 
 dense (Dense)               (None, 100)               20100     
                                                                 
 dense_1 (Dense)             (None, 1)                 101       
                                                                 
=================================================================
Total params: 60,601
Trainable params: 60,601
Non-trainable params: 0
_________________________________________________________________

四 编译模型 

optimizer = Adam(learning_rate=1e-4)
# 定义损失函数为二元交叉熵(binary_crossentropy),适用于二分类任务。使用先前定义的优化器,并设置监控指标为准确率
model.compile(loss='binary_crossentropy',optimizer=optimizer,metrics='accuracy')

五 训练模型 

epochs = 100
model.fit(x=X_train,y=y_train,validation_data=(X_test,y_test),verbose=1,
         epochs=epochs,batch_size=128)

acc = model.history.history['accuracy']
val_acc = model.history.history['val_accuracy']
loss = model.history.history['loss']
val_loss = model.history.history['val_loss']
Epoch 1/100
3/3 [==============================] - 1s 130ms/step - loss: 0.6872 - accuracy: 0.5551 - val_loss: 0.6884 - val_accuracy: 0.5806
Epoch 2/100
3/3 [==============================] - 0s 19ms/step - loss: 0.6763 - accuracy: 0.6250 - val_loss: 0.6848 - val_accuracy: 0.6129
Epoch 3/100
3/3 [==============================] - 0s 19ms/step - loss: 0.6660 - accuracy: 0.6912 - val_loss: 0.6814 - val_accuracy: 0.6452
Epoch 4/100
3/3 [==============================] - 0s 18ms/step - loss: 0.6562 - accuracy: 0.7426 - val_loss: 0.6781 - val_accuracy: 0.6452
Epoch 5/100
3/3 [==============================] - 0s 18ms/step - loss: 0.6467 - accuracy: 0.7647 - val_loss: 0.6751 - val_accuracy: 0.6129
Epoch 6/100
3/3 [==============================] - 0s 19ms/step - loss: 0.6375 - accuracy: 0.7941 - val_loss: 0.6722 - val_accuracy: 0.6452
Epoch 7/100
3/3 [==============================] - 0s 18ms/step - loss: 0.6285 - accuracy: 0.8051 - val_loss: 0.6694 - val_accuracy: 0.6129
Epoch 8/100
3/3 [==============================] - 0s 18ms/step - loss: 0.6193 - accuracy: 0.8015 - val_loss: 0.6666 - val_accuracy: 0.6129
Epoch 9/100
3/3 [==============================] - 0s 18ms/step - loss: 0.6094 - accuracy: 0.8125 - val_loss: 0.6635 - val_accuracy: 0.5806
Epoch 10/100
3/3 [==============================] - 0s 18ms/step - loss: 0.6002 - accuracy: 0.8162 - val_loss: 0.6602 - val_accuracy: 0.6129
Epoch 11/100
3/3 [==============================] - 0s 25ms/step - loss: 0.5903 - accuracy: 0.8125 - val_loss: 0.6565 - val_accuracy: 0.5806
Epoch 12/100
3/3 [==============================] - 0s 18ms/step - loss: 0.5795 - accuracy: 0.8125 - val_loss: 0.6526 - val_accuracy: 0.5806
Epoch 13/100
3/3 [==============================] - 0s 18ms/step - loss: 0.5686 - accuracy: 0.8125 - val_loss: 0.6484 - val_accuracy: 0.6129
Epoch 14/100
3/3 [==============================] - 0s 20ms/step - loss: 0.5571 - accuracy: 0.8125 - val_loss: 0.6436 - val_accuracy: 0.6452
Epoch 15/100
3/3 [==============================] - 0s 20ms/step - loss: 0.5451 - accuracy: 0.8125 - val_loss: 0.6377 - val_accuracy: 0.6452
Epoch 16/100
3/3 [==============================] - 0s 17ms/step - loss: 0.5322 - accuracy: 0.8125 - val_loss: 0.6315 - val_accuracy: 0.6452
Epoch 17/100
3/3 [==============================] - 0s 24ms/step - loss: 0.5190 - accuracy: 0.8199 - val_loss: 0.6251 - val_accuracy: 0.6452
Epoch 18/100
3/3 [==============================] - 0s 17ms/step - loss: 0.5053 - accuracy: 0.8199 - val_loss: 0.6190 - val_accuracy: 0.6774
Epoch 19/100
3/3 [==============================] - 0s 17ms/step - loss: 0.4910 - accuracy: 0.8162 - val_loss: 0.6132 - val_accuracy: 0.6774
Epoch 20/100
3/3 [==============================] - 0s 16ms/step - loss: 0.4765 - accuracy: 0.8199 - val_loss: 0.6076 - val_accuracy: 0.6774
Epoch 21/100
3/3 [==============================] - 0s 16ms/step - loss: 0.4616 - accuracy: 0.8235 - val_loss: 0.6007 - val_accuracy: 0.6774
Epoch 22/100
3/3 [==============================] - 0s 16ms/step - loss: 0.4470 - accuracy: 0.8125 - val_loss: 0.5943 - val_accuracy: 0.6774
Epoch 23/100
3/3 [==============================] - 0s 16ms/step - loss: 0.4345 - accuracy: 0.8162 - val_loss: 0.5906 - val_accuracy: 0.6774
Epoch 24/100
3/3 [==============================] - 0s 15ms/step - loss: 0.4219 - accuracy: 0.8162 - val_loss: 0.5901 - val_accuracy: 0.7419
Epoch 25/100
3/3 [==============================] - 0s 16ms/step - loss: 0.4116 - accuracy: 0.8162 - val_loss: 0.5921 - val_accuracy: 0.7742
Epoch 26/100
3/3 [==============================] - 0s 16ms/step - loss: 0.4056 - accuracy: 0.8272 - val_loss: 0.5990 - val_accuracy: 0.7419
Epoch 27/100
3/3 [==============================] - 0s 15ms/step - loss: 0.3983 - accuracy: 0.8309 - val_loss: 0.5970 - val_accuracy: 0.7097
Epoch 28/100
3/3 [==============================] - 0s 15ms/step - loss: 0.3920 - accuracy: 0.8309 - val_loss: 0.5914 - val_accuracy: 0.7097
Epoch 29/100
3/3 [==============================] - 0s 15ms/step - loss: 0.3860 - accuracy: 0.8235 - val_loss: 0.5863 - val_accuracy: 0.7097
Epoch 30/100
3/3 [==============================] - 0s 17ms/step - loss: 0.3802 - accuracy: 0.8235 - val_loss: 0.5724 - val_accuracy: 0.7097
Epoch 31/100
3/3 [==============================] - 0s 18ms/step - loss: 0.3757 - accuracy: 0.8346 - val_loss: 0.5572 - val_accuracy: 0.7419
Epoch 32/100
3/3 [==============================] - 0s 20ms/step - loss: 0.3766 - accuracy: 0.8272 - val_loss: 0.5545 - val_accuracy: 0.7419
Epoch 33/100
3/3 [==============================] - 0s 18ms/step - loss: 0.3706 - accuracy: 0.8272 - val_loss: 0.5608 - val_accuracy: 0.7419
Epoch 34/100
3/3 [==============================] - 0s 17ms/step - loss: 0.3639 - accuracy: 0.8382 - val_loss: 0.5899 - val_accuracy: 0.7419
Epoch 35/100
3/3 [==============================] - 0s 16ms/step - loss: 0.3694 - accuracy: 0.8272 - val_loss: 0.6097 - val_accuracy: 0.7742
Epoch 36/100
3/3 [==============================] - 0s 16ms/step - loss: 0.3682 - accuracy: 0.8346 - val_loss: 0.5859 - val_accuracy: 0.7419
Epoch 37/100
3/3 [==============================] - 0s 17ms/step - loss: 0.3567 - accuracy: 0.8309 - val_loss: 0.5680 - val_accuracy: 0.7419
Epoch 38/100
3/3 [==============================] - 0s 17ms/step - loss: 0.3497 - accuracy: 0.8419 - val_loss: 0.5528 - val_accuracy: 0.7419
Epoch 39/100
3/3 [==============================] - 0s 16ms/step - loss: 0.3484 - accuracy: 0.8603 - val_loss: 0.5417 - val_accuracy: 0.7742
Epoch 40/100
3/3 [==============================] - 0s 22ms/step - loss: 0.3487 - accuracy: 0.8603 - val_loss: 0.5386 - val_accuracy: 0.6774
Epoch 41/100
3/3 [==============================] - 0s 22ms/step - loss: 0.3473 - accuracy: 0.8640 - val_loss: 0.5383 - val_accuracy: 0.7097
Epoch 42/100
3/3 [==============================] - 0s 19ms/step - loss: 0.3422 - accuracy: 0.8676 - val_loss: 0.5425 - val_accuracy: 0.7742
Epoch 43/100
3/3 [==============================] - 0s 19ms/step - loss: 0.3353 - accuracy: 0.8713 - val_loss: 0.5467 - val_accuracy: 0.7419
Epoch 44/100
3/3 [==============================] - 0s 18ms/step - loss: 0.3318 - accuracy: 0.8787 - val_loss: 0.5565 - val_accuracy: 0.7419
Epoch 45/100
3/3 [==============================] - 0s 17ms/step - loss: 0.3289 - accuracy: 0.8750 - val_loss: 0.5572 - val_accuracy: 0.7419
Epoch 46/100
3/3 [==============================] - 0s 18ms/step - loss: 0.3263 - accuracy: 0.8750 - val_loss: 0.5548 - val_accuracy: 0.7419
Epoch 47/100
3/3 [==============================] - 0s 19ms/step - loss: 0.3227 - accuracy: 0.8787 - val_loss: 0.5520 - val_accuracy: 0.7419
Epoch 48/100
3/3 [==============================] - 0s 18ms/step - loss: 0.3191 - accuracy: 0.8824 - val_loss: 0.5564 - val_accuracy: 0.7419
Epoch 49/100
3/3 [==============================] - 0s 19ms/step - loss: 0.3172 - accuracy: 0.8713 - val_loss: 0.5539 - val_accuracy: 0.7419
Epoch 50/100
3/3 [==============================] - 0s 20ms/step - loss: 0.3149 - accuracy: 0.8824 - val_loss: 0.5381 - val_accuracy: 0.7419
Epoch 51/100
3/3 [==============================] - 0s 17ms/step - loss: 0.3110 - accuracy: 0.8824 - val_loss: 0.5427 - val_accuracy: 0.7419
Epoch 52/100
3/3 [==============================] - 0s 18ms/step - loss: 0.3084 - accuracy: 0.8787 - val_loss: 0.5510 - val_accuracy: 0.7419
Epoch 53/100
3/3 [==============================] - 0s 17ms/step - loss: 0.3069 - accuracy: 0.8750 - val_loss: 0.5571 - val_accuracy: 0.7419
Epoch 54/100
3/3 [==============================] - 0s 19ms/step - loss: 0.3052 - accuracy: 0.8860 - val_loss: 0.5468 - val_accuracy: 0.7419
Epoch 55/100
3/3 [==============================] - 0s 18ms/step - loss: 0.3024 - accuracy: 0.8787 - val_loss: 0.5347 - val_accuracy: 0.7419
Epoch 56/100
3/3 [==============================] - 0s 18ms/step - loss: 0.3010 - accuracy: 0.8787 - val_loss: 0.5417 - val_accuracy: 0.7419
Epoch 57/100
3/3 [==============================] - 0s 21ms/step - loss: 0.3013 - accuracy: 0.8860 - val_loss: 0.5496 - val_accuracy: 0.7419
Epoch 58/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2975 - accuracy: 0.8824 - val_loss: 0.5355 - val_accuracy: 0.7419
Epoch 59/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2954 - accuracy: 0.8787 - val_loss: 0.5198 - val_accuracy: 0.7419
Epoch 60/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2970 - accuracy: 0.8787 - val_loss: 0.5148 - val_accuracy: 0.7419
Epoch 61/100
3/3 [==============================] - 0s 19ms/step - loss: 0.2991 - accuracy: 0.8824 - val_loss: 0.5187 - val_accuracy: 0.7419
Epoch 62/100
3/3 [==============================] - 0s 19ms/step - loss: 0.2958 - accuracy: 0.8787 - val_loss: 0.5376 - val_accuracy: 0.7419
Epoch 63/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2891 - accuracy: 0.8860 - val_loss: 0.5659 - val_accuracy: 0.7419
Epoch 64/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2923 - accuracy: 0.8824 - val_loss: 0.5777 - val_accuracy: 0.7419
Epoch 65/100
3/3 [==============================] - 0s 19ms/step - loss: 0.2892 - accuracy: 0.8824 - val_loss: 0.5560 - val_accuracy: 0.7419
Epoch 66/100
3/3 [==============================] - 0s 19ms/step - loss: 0.2848 - accuracy: 0.8934 - val_loss: 0.5405 - val_accuracy: 0.7419
Epoch 67/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2828 - accuracy: 0.8897 - val_loss: 0.5334 - val_accuracy: 0.7419
Epoch 68/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2810 - accuracy: 0.8934 - val_loss: 0.5332 - val_accuracy: 0.7419
Epoch 69/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2792 - accuracy: 0.8934 - val_loss: 0.5307 - val_accuracy: 0.7419
Epoch 70/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2780 - accuracy: 0.8934 - val_loss: 0.5370 - val_accuracy: 0.7419
Epoch 71/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2763 - accuracy: 0.8934 - val_loss: 0.5459 - val_accuracy: 0.7419
Epoch 72/100
3/3 [==============================] - 0s 21ms/step - loss: 0.2762 - accuracy: 0.8971 - val_loss: 0.5583 - val_accuracy: 0.7419
Epoch 73/100
3/3 [==============================] - 0s 15ms/step - loss: 0.2759 - accuracy: 0.8971 - val_loss: 0.5676 - val_accuracy: 0.7419
Epoch 74/100
3/3 [==============================] - 0s 15ms/step - loss: 0.2764 - accuracy: 0.8934 - val_loss: 0.5715 - val_accuracy: 0.7419
Epoch 75/100
3/3 [==============================] - 0s 15ms/step - loss: 0.2747 - accuracy: 0.8934 - val_loss: 0.5540 - val_accuracy: 0.7419
Epoch 76/100
3/3 [==============================] - 0s 15ms/step - loss: 0.2701 - accuracy: 0.8971 - val_loss: 0.5387 - val_accuracy: 0.7419
Epoch 77/100
3/3 [==============================] - 0s 15ms/step - loss: 0.2689 - accuracy: 0.9044 - val_loss: 0.5308 - val_accuracy: 0.7419
Epoch 78/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2701 - accuracy: 0.9081 - val_loss: 0.5241 - val_accuracy: 0.7097
Epoch 79/100
3/3 [==============================] - 0s 15ms/step - loss: 0.2716 - accuracy: 0.9007 - val_loss: 0.5241 - val_accuracy: 0.7097
Epoch 80/100
3/3 [==============================] - 0s 15ms/step - loss: 0.2690 - accuracy: 0.9007 - val_loss: 0.5332 - val_accuracy: 0.7097
Epoch 81/100
3/3 [==============================] - 0s 15ms/step - loss: 0.2650 - accuracy: 0.9154 - val_loss: 0.5418 - val_accuracy: 0.7419
Epoch 82/100
3/3 [==============================] - 0s 15ms/step - loss: 0.2631 - accuracy: 0.9118 - val_loss: 0.5434 - val_accuracy: 0.7419
Epoch 83/100
3/3 [==============================] - 0s 16ms/step - loss: 0.2620 - accuracy: 0.9154 - val_loss: 0.5406 - val_accuracy: 0.7419
Epoch 84/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2603 - accuracy: 0.9154 - val_loss: 0.5395 - val_accuracy: 0.7419
Epoch 85/100
3/3 [==============================] - 0s 26ms/step - loss: 0.2588 - accuracy: 0.9154 - val_loss: 0.5497 - val_accuracy: 0.7419
Epoch 86/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2562 - accuracy: 0.9081 - val_loss: 0.5687 - val_accuracy: 0.7419
Epoch 87/100
3/3 [==============================] - 0s 19ms/step - loss: 0.2609 - accuracy: 0.8971 - val_loss: 0.5754 - val_accuracy: 0.7419
Epoch 88/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2569 - accuracy: 0.8971 - val_loss: 0.5555 - val_accuracy: 0.7419
Epoch 89/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2532 - accuracy: 0.9081 - val_loss: 0.5399 - val_accuracy: 0.7419
Epoch 90/100
3/3 [==============================] - 0s 19ms/step - loss: 0.2545 - accuracy: 0.9191 - val_loss: 0.5361 - val_accuracy: 0.7419
Epoch 91/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2578 - accuracy: 0.9118 - val_loss: 0.5375 - val_accuracy: 0.7419
Epoch 92/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2572 - accuracy: 0.9118 - val_loss: 0.5507 - val_accuracy: 0.7419
Epoch 93/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2516 - accuracy: 0.9118 - val_loss: 0.5715 - val_accuracy: 0.7419
Epoch 94/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2487 - accuracy: 0.9118 - val_loss: 0.5705 - val_accuracy: 0.7419
Epoch 95/100
3/3 [==============================] - 0s 18ms/step - loss: 0.2464 - accuracy: 0.9118 - val_loss: 0.5551 - val_accuracy: 0.7419
Epoch 96/100
3/3 [==============================] - 0s 20ms/step - loss: 0.2454 - accuracy: 0.9191 - val_loss: 0.5480 - val_accuracy: 0.7419
Epoch 97/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2438 - accuracy: 0.9154 - val_loss: 0.5543 - val_accuracy: 0.7419
Epoch 98/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2447 - accuracy: 0.9118 - val_loss: 0.5534 - val_accuracy: 0.7419
Epoch 99/100
3/3 [==============================] - 0s 17ms/step - loss: 0.2446 - accuracy: 0.9118 - val_loss: 0.5425 - val_accuracy: 0.7419
Epoch 100/100
3/3 [==============================] - 0s 19ms/step - loss: 0.2434 - accuracy: 0.9118 - val_loss: 0.5213 - val_accuracy: 0.7742

 六 结果可视化

epochs_range = range(100)
plt.figure(figsize=(14,4))
plt.subplot(1,2,1)
plt.plot(epochs_range,acc,label='training accuracy')
plt.plot(epochs_range,val_acc,label='validation accuracy')
plt.legend(loc='lower right')
plt.title('training and validation accuracy')

plt.subplot(1,2,2)
plt.plot(epochs_range,loss,label='training loss')
plt.plot(epochs_range,val_loss,label='validation loss')
plt.legend(loc='upper right')
plt.title('training and validation loss')
plt.show()

总结: 

1. 模型输入要求
RNN 输入格式:许多深度学习模型,尤其是 RNN 和 LSTM,需要输入数据的形状为三维:(样本数, 时间步数, 特征数)。这使得模型能够处理序列数据并学习时间依赖关系。
2. 数据原始形状
在标准化后,X_train 和 X_test 的形状是 (样本数, 特征数)。例如,如果 X_train 有 100 个样本和 10 个特征,则其形状为 (100, 10)。
3. 重塑的目的
重塑为三维:通过 X_train.reshape(X_train.shape[0], X_train.shape[1], 1),你将数据的形状改变为 (样本数, 特征数, 1)。这里的 1 表示特征数,在单变量情况下,只包含一个特征。
例如,假设 X_train 原本的形状是 (100, 10),重塑后将变为 (100, 10, 1),表示有 100 个样本,每个样本有 10 个时间步(特征)。
4. 适应模型结构
通过这种重塑,数据可以被 RNN 模型正确地处理,从而捕捉到特征随时间变化的模式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2208026.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

jenkins 插件Publish Over SSH

一、安装插件 二、配置sshserver http://192.168.31.156:8080/manage/configure 三、添加自由风格:PublishOverSSHDemo 我们将工作目录:/var/lib/jenkins/workspace/PublishOverSSHDemo下的图片m3.jpeg 同步到目标143服务器目录:/root/imag…

Mysql(七) --- 索引

文章目录 前言1.简介1.1.索引是什么?1.2.为什么使用索引? 2.索引应该使用什么数据结构?2.1.Hash2.2.二叉搜索树2.3.N叉树2.4.B树2.4.1. 简介2.4.2. B树的特点2.4.3. B树和B树的对比 3.Mysql中的页3.1.为什么要使用页3.2.页文件头和页文件尾3.3.页主体3.…

Python开源项目月排行 2024年9月

#2024年9月2024年9月29日1jax一个开源的高性能数值计算库,旨在为机器学习和科学计算提供灵活性和效率。该项目由 Google 研发,并在 GitHub 上进行维护。AX 主要用于以下几个方面: 自动微分:提供高效的自动微分功能,支持…

嵌入式面试——FreeRTOS篇(九) 内存管理

本篇为:FreeRTOS 内存管理篇 一、FreeRTOS内存管理简介 1、FreeRTOS内存管理介绍 答: 在使用 FreeRTOS 创建任务、队列、信号量等对象的时,一般都提供了两种方法: 动态方法创建:自动地从 FreeRTOS 管理的内存堆中申…

【AI绘画教程】StableDiffusion出图颜色偏白发灰?用好VAE立马解决!(附VAE模型下载)

大家好,我是画画的小强 之前已经给大家推荐过不少AI绘画中 Stable Diffusion WebUI 的大模型,今天为大家介绍一下 WebUI 中“外挂VAE”的相关内容,可以解决我们在用大模型出图过程中出现的图像颜色发灰、发白的问题,一起来看看吧…

话说你们维保到期通知都是谁通知的

离谱了,公司有个客户维保到期了 过了2个月才发现。 白干了两个月, 客户也不愿意给这两个月钱。 现在商务和运维在扯皮, 商务说运维部门应该到期给客户发通知, 运维说商务到期要续签, 就应该商务去通知。 然后老…

ppt怎么做出高级感?找对高级ppt模板,轻松一键替换

想问问大家国庆节后的工作忙吗?小编的大厂朋友们都忙疯了! 都在忙着做各种项目的执行总结PPT报告,和接下来的工作计划展望!做出来的PPT还会被领导嫌弃排版没创意、不高级...... 这不,还来找小编,问有没有什…

水库抽样算法(大数据算法作业)

时隔一个多月,终于想起来写大数据算法基础的实验报告,主要是快截止了,hh 这两天加急把这个报告写完了~ 接下来,写一写证明过程(参考书籍:高等教育出版社《数据科学与工程算法基础》)主要代码以…

MODBUS协议介绍,通过MODBUS协议控制伺服电机工作

1.前言 modbus协议本身的介绍,请大家自行查阅资料。本文简单介绍一下如何通过MODBUS协议组装控制指令。 最近搞了一个项目,要驱动伺服电机工作。通过下位机STM32 407 100封脚 给伺服电机发控制指令。电机和下位机之前的通信采用RS485串口通信&#xff…

seaCMS v12.9代码审计学习(下半)

文章目录 admin/admin_safe.php任意文件下载CSRF 添加管理员账户CSRF配合XSS弹cookie admin/admin_safe.php任意文件下载 在admin_safe.php文件下有着这么一段代码,他的作用时检查action的值是否为download,如果为download那么将你传入的文件直接打印给…

LeetCode题练习与总结:二叉树的序列化与反序列化--297

一、题目描述 序列化是将一个数据结构或者对象转换为连续的比特位的操作,进而可以将转换后的数据存储在一个文件或者内存中,同时也可以通过网络传输到另一个计算机环境,采取相反方式重构得到原数据。 请设计一个算法来实现二叉树的序列化与…

校园网环境下基于OpenWRT的路由器选型与解决方案

校园网环境下基于OpenWRT的路由器选型与解决方案 网页认证(锐捷认证)解除校园网设备限制,路由器选型和解决方案 openwrt 我们学校校园网一个账号只能登录两台设备,多了直接就退出联网状态,然后校园网是基于锐捷认证进行认证的,然后通过ment…

基于逻辑回归实现乳腺癌预测

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

使用IDEA生成API文档

1. 在IDEA中,Tools->Generate JavaDoc Scope 2.Output Directory里面放,生成的目录。 Other command line arguments:-encoding utf-8 -charset utf-8(解决乱码) 3.点击ok,生成的效果图

构建数字文化产业链,拓展文化产业发展空间

在当今全球化和数字化的双重浪潮下,文化产业正以前所未有的速度进行变革和升级。作为文化与科技深度融合的产物,数字文化产业链正以其独特的魅力和无限的潜力,引领文化产业向更高层次、更广领域迈进。 数字文化产业链的构建,不仅…

特斯拉智驾路线影响国内OEM组织架构变革,Robotaxi重塑汽车定位搅动风云

智驾研发组织面向端到端进行调整,车企内部研发资源聚焦,智驾方案选择将快速收敛 特斯拉在智驾领域的技术方向被国内车企当作学习的范本,而技术路线的切换往往伴随组织架构的调整。特斯拉 FSD 团队人员规模在数百人,但数据积累和训练算力领先。智驾研发迈向端到端使得车企研…

QD1-P13 HTML 表单标签(form)

本节学习 HTML 表单标签:form ‍ 本节视频 www.bilibili.com/video/BV1n64y1U7oj?p13 ‍ 知识点1:form标签的用途 ​form​ 标签在HTML中用于创建一个表单,它允许用户输入数据,然后可以将这些数据发送到服务器进行处理。以下…

JS 运算符

目录 1. 赋值运算符 2. 一元运算符 2.1 自增 2.1.1 前置自增 2.1.2 后置自增 2.1.3 前置与后置自增对比 3. 比较运算符 3.1 字符串比较 4. 逻辑运算符 4.1 案例 5. 运算符优先级 1. 赋值运算符 2. 一元运算符 2.1 自增 2.1.1 前置自增 2.1.2 后置自增 2.1.3 前置与后…

户外防火值守:太阳能语音监控杆的参数及技术特点

随着假期旅游的热潮日渐高涨,我们游览各大景区、公园或森林区域时,经常会与各种智能设备不期而遇。这些高科技产品不仅提升了旅游体验,更在无形中保障了游客的安全与景区的环境保护。在我最近的旅行经历中,尤其是在深圳大鹏旅游景…

推荐几款适合跨境电商外贸的爬虫软件

在当今数据驱动的时代,自动化爬虫工具和软件成为了许多企业和个人获取数据的重要手段,特别是跨境电商、外贸等业务,对数据的需求非常大,比如对amazon、tiktok、shopee等网站数据的监测和获取。 这里会介绍6款功能强大、操作简便的…