逼近理论及应用精解【12】

news2024/10/9 8:29:09

文章目录

  • 卷积
    • 卷积层与滤波层
      • 定义
      • 数学原理与公式
      • 定理
      • 架构
      • 例子
      • 例题
    • 卷积层和滤波层概念的详细解释
      • 卷积层
      • 滤波层
    • 滤波层和卷积层在卷积神经网络(CNN)中区别
      • 滤波层
      • 卷积层
      • 总结
      • 卷积层的数学原理
      • 滤波层的数学原理
  • 参考文献

卷积

卷积层与滤波层

定义

  • 卷积层:卷积层(Convolutional Layer)是卷积神经网络(Convolutional Neural Network,CNN)中的核心组件,它通过卷积运算对输入数据进行特征提取。
  • 滤波层:在卷积神经网络中,滤波层通常指的是卷积层,其中卷积核(Convolution Kernel)也称为滤波器(Filter)。卷积核是一个较小的矩阵,用于提取输入数据的局部特征。

数学原理与公式

  • 卷积运算:卷积运算是一种数学运算,用于两个函数之间的积分。在图像处理中,卷积运算通常表示为对输入图像与滤波器(卷积核)进行点积运算。卷积层的数学原理基于卷积运算,通过滑动窗口的方式在输入图像上移动卷积核,计算每个位置的点积,从而生成特征图(Feature Map)。
  • 卷积层公式:卷积层的输出特征图大小计算公式为 W o u t = ( W i n − k + 2 P ) / S + 1 W_{out}=(W_{in}-k +2P)/S+1 Wout=(Wink+2P)/S+1,其中 W o u t W_{out} Wout 是输出特征图的宽度, W i n W_{in} Win 是输入图像的宽度, k k k 是卷积核的大小, P P P 是填充(Padding)的像素数, S S S 是步长(Stride)。
  • 卷积层计算:卷积层的计算包括定位卷积核、元素级乘积和求和、滑动卷积核等步骤。卷积核在输入图像上滑动,在每个位置上进行元素级的乘积并求和,从而生成一个输出值。这个过程会重复多次以生成完整的特征映射。

定理

  • 卷积定理:卷积定理是傅立叶变换满足的一个重要性质。它指出,函数卷积的傅立叶变换等于函数傅立叶变换的乘积。这一定理在信号处理、通信系统等领域有广泛应用。

架构

  • 卷积神经网络架构:卷积神经网络通常由多个卷积层、池化层、激活层等交叉堆叠而成。卷积层负责特征提取,池化层用于降采样和减少计算量,激活层引入非线性特性。

例子

  • 边缘检测:在图像处理中,卷积层可以通过使用特定的卷积核(如Sobel算子)来检测图像中的边缘。边缘检测是卷积层在图像处理中的一个典型应用。

例题

  • 例题1:假设输入图像大小为5x5,卷积核大小为3x3,步长为1,无填充。计算输出特征图的大小。

    • 解:根据卷积层输出特征图大小的计算公式, W o u t = ( W i n − k + 2 P ) / S + 1 W_{out}=(W_{in}-k +2P)/S+1 Wout=(Wink+2P)/S+1,其中 W i n = 5 W_{in}=5 Win=5 k = 3 k=3 k=3 P = 0 P=0 P=0 S = 1 S=1 S=1。代入公式得 W o u t = ( 5 − 3 ) / 1 + 1 = 3 W_{out}=(5-3)/1+1=3 Wout=(53)/1+1=3,因此输出特征图的大小为3x3。
  • 例题2:假设输入图像大小为8x8,卷积核大小为3x3,步长为2,填充为1。计算输出特征图的大小。

    • 解:同样根据卷积层输出特征图大小的计算公式, W o u t = ( W i n − k + 2 P ) / S + 1 W_{out}=(W_{in}-k +2P)/S+1 Wout=(Wink+2P)/S+1,其中 W i n = 8 W_{in}=8 Win=8 k = 3 k=3 k=3 P = 1 P=1 P=1 S = 2 S=2 S=2。代入公式得 W o u t = ( 8 − 3 + 2 ) / 2 + 1 = 4 W_{out}=(8-3+2)/2+1=4 Wout=(83+2)/2+1=4,因此输出特征图的大小为4x4。

综上所述,卷积层与滤波层在卷积神经网络中扮演着至关重要的角色,它们通过卷积运算提取输入数据的局部特征,为后续的图像处理或分类任务提供关键信息。

卷积层和滤波层概念的详细解释

卷积层

卷积层(Convolutional Layer)是卷积神经网络(Convolutional Neural Network,CNN)中的核心组件,它通过卷积运算对输入数据进行特征提取。

  • 定义:卷积层由多个卷积单元组成,每个卷积单元的参数通过反向传播算法优化得到。卷积运算的目的是提取输入数据的局部特征。
  • 数学原理:卷积层通过卷积核(Convolution Kernel)与输入特征图(通常是图像或其他类型的数据)进行卷积运算,提取出输入数据中的局部特征。这些特征可以是低级的,如边缘、纹理和颜色等,也可以是更高级别的抽象特征,这些特征在后续的网络层中会被进一步处理和组合,以形成更复杂的特征表示。卷积层中的每个卷积核都会在整个输入特征图上滑动,进行卷积运算。
  • 参数共享和局部连接:卷积层通过参数共享和局部连接的方式大大减少了网络参数的数量,降低了模型的复杂度和计算成本,同时也减少了过拟合的风险。因为同一卷积核在滑动过程中使用的参数是固定的,这意味着它在学习输入数据的某种特征时,会将这种特征应用到整个输入数据上。
  • 激活函数:为了引入非线性特性并增强模型的表达能力,卷积层通常会使用激活函数(如ReLU、Sigmoid和Tanh等)对输出特征图进行非线性转换。

滤波层

在卷积神经网络中,滤波层通常指的是卷积层,其中卷积核(Convolution Kernel)也称为滤波器(Filter)。

  • 定义:滤波器是一个较小的矩阵,用于提取输入数据的局部特征。在卷积层中,滤波器(卷积核)通过滑动窗口的方式在输入数据上进行卷积运算,从而提取出输入数据中的局部特征。
  • 结构:一个“kernel”更倾向于是2D的权重矩阵,而“filter”则是指多个Kernel堆叠的3D结构。如果是一个2D的filter,那么两者就是一样的。但是一个3D filter,在大多数深度学习的卷积中,它是包含kernel的。每个卷积核都是独一无二的,主要在于强调输入通道的不同方面。
  • 作用:滤波器的作用是通过卷积运算提取输入数据的局部特征。这些特征可以是图像的边缘、线条、角等低级特征,也可以是更高级别的抽象特征。

综上所述,卷积层和滤波层在卷积神经网络中扮演着至关重要的角色,它们通过卷积运算和滤波操作提取输入数据的局部特征,为后续的图像处理或分类任务提供关键信息。

滤波层和卷积层在卷积神经网络(CNN)中区别

虽然都涉及到对输入数据的特征提取,但它们在实现细节和目的上存在一些区别。以下是滤波层和卷积层的主要区别:

滤波层

  • 目的:滤波层的主要目的是通过滤波器(也称为卷积核)对输入数据进行特征提取。这些特征可以是图像的边缘、纹理、颜色等信息。
  • 操作:滤波层通过滤波器在输入数据上进行滑动窗口操作,计算每个位置的点积,并生成输出特征图。在这个过程中,滤波器的大小、形状和权重都是固定的,不会随着输入数据的改变而改变。
  • 特点:滤波层通常不会改变输入数据的大小,除非进行边界填充(Padding)或步长(Stride)不等于1的操作。滤波操作可以看作是卷积操作的一种特殊情况,其中卷积核不需要进行180度翻转。

卷积层

  • 目的:卷积层的主要目的也是进行特征提取,但它通过卷积运算实现了更复杂的特征提取能力。卷积层能够学习到输入数据的空间层次结构,提取出更高级别的特征表示。
  • 操作:卷积层中的卷积核在输入数据上进行滑动窗口操作,但在进行点积计算之前,通常需要将卷积核进行180度翻转。然后,将翻转后的卷积核与输入数据进行点积运算,生成输出特征图。卷积层还可以包含多个卷积核,每个卷积核都可以提取不同类型的特征。
  • 特点:卷积层通过参数共享和局部连接的方式显著减少了网络参数的数量,降低了模型的复杂度。同时,卷积层还具有一定的平移不变性,即对输入数据进行平移后,卷积层的输出基本保持不变。这使得卷积层在处理图像等具有空间层次结构的数据时具有独特的优势。

总结

  • 操作区别:滤波层通常不进行卷积核的翻转操作,而卷积层则需要进行180度翻转。
  • 特征提取能力:卷积层通过参数共享和局部连接的方式实现了更复杂的特征提取能力,能够学习到输入数据的空间层次结构。而滤波层则更多地关注于局部特征的提取。
  • 应用场景:滤波层在处理图像等具有空间层次结构的数据时可能不如卷积层有效,但在某些特定任务(如边缘检测)中可能表现出色。卷积层则更广泛地应用于各种图像处理和计算机视觉任务中。

总的来说,滤波层和卷积层在卷积神经网络中各有特点,它们共同构成了强大的特征提取机制,为后续的图像处理和分类任务提供了坚实的基础。
卷积层和滤波层在卷积神经网络(CNN)中的数学原理主要涉及到卷积运算,尽管滤波层在CNN中通常指的是卷积层,但在某些情况下,滤波层可能特指使用特定滤波器的卷积层。以下是对卷积层和滤波层数学原理的详细解释:

卷积层的数学原理

  1. 卷积运算

    • 卷积运算是一种线性运算,用于计算两个函数(在离散情况下是序列)之间的重叠量。在卷积神经网络中,卷积运算通常用于计算输入数据与卷积核(滤波器)之间的重叠量。
    • 二维卷积运算的公式可以表示为:

    Y ( i , j ) = ∑ m = 0 M − 1 ∑ n = 0 N − 1 X ( i + m , j + n ) ⋅ W ( m , n ) Y(i, j) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} X(i+m, j+n) \cdot W(m, n) Y(i,j)=m=0M1n=0N1X(i+m,j+n)W(m,n)

    其中, X X X 是输入数据, W W W 是卷积核, Y Y Y 是输出特征图, M M M N N N 分别是卷积核的高度和宽度。

  2. 参数共享

    • 卷积层通过参数共享机制显著减少了模型的参数量。在卷积运算中,同一个卷积核会在输入数据的不同位置进行滑动,并使用相同的权重进行计算。
    • 这种参数共享机制使得卷积层能够学习到输入数据的空间层次结构,并提取出具有平移不变性的特征。
  3. 局部连接

    • 卷积层中的神经元只与输入数据的局部区域相连接,这种连接方式称为局部连接。
    • 局部连接使得卷积层能够专注于输入数据的局部特征,并通过多层网络迭代提取更复杂的特征。

滤波层的数学原理

  1. 滤波器

    • 在卷积神经网络中,滤波器通常指的是卷积核。滤波器是一个较小的矩阵,用于提取输入数据的局部特征。
    • 滤波器的尺寸、形状和权重都是可学习的参数,通过反向传播算法进行优化。
  2. 滤波操作

    • 滤波操作可以看作是卷积操作的一种特殊情况。在滤波层中,滤波器在输入数据上进行滑动窗口操作,计算每个位置的点积,并生成输出特征图。
    • 与卷积层类似,滤波层也通过参数共享和局部连接的方式减少模型的参数量,并提取出输入数据的局部特征。
  3. 特定滤波器的应用

    • 在某些情况下,滤波层可能特指使用特定滤波器的卷积层。例如,在边缘检测任务中,可以使用Sobel滤波器来提取图像的边缘特征。
    • 这些特定滤波器通常具有固定的权重和尺寸,用于实现特定的图像处理任务。

综上所述,卷积层和滤波层在卷积神经网络中的数学原理主要涉及到卷积运算、参数共享、局部连接以及特定滤波器的应用。这些原理共同构成了卷积神经网络强大的特征提取能力,为后续的图像处理和分类任务提供了坚实的基础。

参考文献

  1. 文心一言

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2198554.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot+Activiti7工作流使用进阶实例-高亮显示BPMN流程图( SpringBoot+Activiti+mybatis+shiro实现)

文章目录 说明绘制流程图排他网关设置任务节点设置创建工程修改 pom.xml 文件准备数据库的表和测试数据修改 application.yml 文件配置静态资源Shiro 相关配置ShiroConfiguration.javaMyShiroRealm.java流程控制器添加静态的资源和模板页面运行结果截图源码地址说明 使用 Spri…

量子数字签名概述

我们都知道,基于量子力学原理研究密钥生成和使用的学科称为量子密码学。其内容包括了量子密钥分发、量子秘密共享、量子指纹识别、量子比特承诺、量子货币、秘密通信扩展量子密钥、量子安全计算、量子数字签名、量子隐性传态等。虽然各种技术发展的状态不同&#xf…

45岁被裁员的程序员,何去何从?

在当今快速变化的技术行业,职业生涯的稳定性受到挑战。在45岁被裁员,对很多程序员来说,可能是一种惊慌失措的体验。然而,这个阶段也可以被视为一个重新审视和调整方向的机会。本文将对可能的出路进行全方位的分析,并提…

springboot 整合 rabbitMQ(1)

目录 一、MQ概述 二、MQ的优势和劣势 三、常见的MQ产品 RabbitMQ使用步骤 第一步:确保rabbitmq启动并且可以访问15672 第二步:导入依赖 第三步:配置 auto自动确认 manual手工确认(推荐使用!可以防止消息丢失&a…

网站集群批量管理-Ansible-(playbook)

1.剧本概述 1. playbook 文件,用于长久保存并且实现批量管理,维护,部署的文件. 类似于脚本存放命令和变量 2. 剧本yaml格式,yaml格式的文件:空格,冒号 2. 区别 ans-playbookans ad-hoc共同点批量管理,使用模块批量管理,使用模块区别重复调用不是很方便,不容易重复场景部署服务…

裸眼3D巨幕视频演示Pr城市广告显示屏样机模板

震撼大气超强视觉冲击力3D城市数字广告牌视频演示pr模板工程文件。 5个城市街景裸眼3D巨幕户外广告显示屏样机模板。每个场景提供2个不同的相机视图。 下载地址:https://prmuban.com/40595.html

移动技术开发:文件的读取

1 实验名称 文件的读写 2 实验目的 掌握Android中读写文件的实现方法。 3 实验源代码 布局文件代码&#xff1a; <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android&quo…

旅游管理智能化:SpringBoot框架的应用

第一章 绪论 1.1 研究现状 时代的发展&#xff0c;我们迎来了数字化信息时代&#xff0c;它正在渐渐的改变着人们的工作、学习以及娱乐方式。计算机网络&#xff0c;Internet扮演着越来越重要的角色&#xff0c;人们已经离不开网络了&#xff0c;大量的图片、文字、视频冲击着我…

MySQL 基础入门教程

参考视频地址&#xff1a;一小时MySQL教程 bilibili SQL 基础 数据库分为关系型数据库和非关系型数据库 常见的关系型数据库&#xff1a; MySQL、PostgreSQL、Oracle、SQL Server等。 非关系型数据库&#xff1a; MongoDB&#xff08;文档型数据库&#xff09;、Redis&am…

1.9 电子商城测试分析

欢迎大家订阅【软件测试】 专栏&#xff0c;开启你的软件测试学习之旅&#xff01; 文章目录 前言1 测试流程2 下单业务测试分析3 单功能测试分析3.1 登录单功能测试分析3.2 购物车单功能测试分析3.3 支付单功能测试分析 4 Web项目非功能测试 前言 电子商城作为一个电子商务平…

Elsevier(爱思唯尔)的Latex模板使用指南以及图、表、文献引用细节

目录 1.模板下载链接 2.模板文件说明与打开方法 2.1.模板文件说明 2.2.模板打开方法 3.模板使用快速入手 3.1.第一部分&#xff1a;导言区 3.1.1.\documentclass 3.1.2.\usepackage 3.1.3.\journal 3.1.4.\captionsetup 3.1.5.\newcommand 3.2.第二部分&#xff1a…

Stable Diffusion绘画 | 人物、场景、3D转手绘线稿

人物线稿 第1步&#xff0c;输入线稿生成必备的提示词&#xff1a; 第2步&#xff0c;开启 ControlNet&#xff0c;加载需要转绘的图片&#xff0c;控制类型选择「SoftEdge」&#xff0c;预处理器选择「softedge_hed」&#xff1a; 第3步&#xff0c;添加一个线稿 LoRA&#x…

search

search problems video link Harvard Machine Learning Frontier 在计算机科学和算法领域&#xff0c;frontier&#xff08;前沿&#xff09;通常指的是在某些搜索或遍历算法中的边界节点集合&#xff0c;这些节点是当前探索到的但还没有被完全处理的节点。前沿的概念常出现在…

WinCC7.5 将归档数据打印到MSFlexGrid控件

第一种方法&#xff1a; WinCC7.5 将归档数据打印到MSHGrid控件 https://blog.csdn.net/weixin_37928884/article/details/134170305 第二种方法&#xff1a; MSFlexGrid控件 查询按钮 Sub OnClick(ByVal Item) …

Airplane.dev 2024年3月关闭之感

airplane 这个云服务产品可能很多人都没有用过。 我们使用的原因是&#xff0c;先前公司非常喜欢使用 airplane 来给运行给已有的产品打运行时补丁。 前公司的策略就是当发现一个问题可能涉及到数据库的不一致性&#xff0c;那么解决方案就是定时运行一套 SQL 来让数据库保持…

MHAD数据集:由京东健康、华中科技大学和浙江大学联合收集,最全面包含多角度、多活动和多生理信号的家庭视频生理学数据集

2024-08-30&#xff0c;由京东健康、华中科技大学和浙江大学联合收集的第一个真实家庭环境中的多模态数据集MHAD&#xff0c;包含不同拍摄角度和各种家庭场景。它包含了迄今为止最全面的生理信号&#xff0c;是计算机视觉、机器学习和生物医学工程等多个学术研究领域的宝贵资源…

计算机毕业设计Tensorflow交通标志识别检测 车流量预测 车速检测 自动驾驶 机器学习 深度学习 人工智能 PyTorch 大数据毕设

《Tensorflow交通标志识别检测》开题报告 一、研究背景及意义 随着智能交通系统和无人驾驶技术的快速发展&#xff0c;交通标志识别系统成为智能驾驶系统的重要组成部分。传统的交通标志识别方法主要依赖于人工检查和识别&#xff0c;存在效率低下、易受主观因素影响等问题。…

js基础速成12-正则表达式

正则表达式 正则表达式&#xff08;Regular Expression&#xff09;或 RegExp 是一种小型编程语言&#xff0c;有助于在数据中查找模式。RegExp 可以用来检查某种模式是否存在于不同的数据类型中。在 JavaScript 中使用 RegExp&#xff0c;可以使用 RegExp 构造函数&#xff0…

髓质脊髓三叉神经核文献阅读笔记

文献阅读 1.RNA-seq 对于大量RNA测序&#xff0c;收集第30天的类器官。使用FastPure细胞/组织总RNA分离试剂盒根据制造商的方案提取总RNA。采用Nanodrop 2000分光光度计测定RNA浓度和纯度。使用Agilent 2100生物分析仪和2100 RNA纳米6000检测试剂盒评估RNA样品的完整性。简单…

自动驾驶系列—从IMU到惯性定位算法:自动驾驶精准定位的幕后科技

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…