超越GPT-4的视觉与文本理解能力,开源多模态模型领跑者 - Molmo

news2025/1/19 14:28:19

Molmo是由艾伦人工智能研究所(Ai2)发布的一系列多模态人工智能模型,旨在提高开放系统在性能上与专有系统(如商业模型)之间的竞争力。以下是对Molmo的详细总结:

Molmo是什么:

Molmo是基于Qwen2和OpenAI的CLIP进行训练的多模态模型,支持语音交互和图片理解。它能够识别图像中的物体、场景和活动,并生成准确的描述。

功能特色:

  1. 图像理解与生成:Molmo能够生成高质量的图像描述,理解图像内容并将其转化为自然语言。
  2. 多模态交互:用户可以同时输入文本和图像,Molmo能够有效融合这两种信息,生成综合性的输出。
  3. 指向与交互:Molmo支持用户通过2D指向交互,增强了与视觉内容的互动能力。
  4. 高质量数据处理:使用的图像字幕数据集完全由人类注释者收集,确保了数据的准确性和多样性。
  5. 灵活的应用场景:Molmo可应用于教育、娱乐、医疗等多个领域。

优势:

  1. 超越OpenAI,性能卓越:Molmo在多个学术基准测试中超越了OpenAI的GPT-4o、Anthropic的Claude 3.5 Sonnet和谷歌的Gemini1.5等模型。
  2. 开源模型:Molmo的所有模型权重、代码、数据和评估方法均对外公开,体现了开源精神并推动AI社区的发展。
  3. 高质量数据训练:Molmo使用了创新的数据收集方法,通过语音描述图像来获取更详细的内容信息,避免了文字描述常见的简略问题,并收集到了大量高质量、多样化的训练数据。
  4. 多模态交互:Molmo支持文本和图像的同时输入,并能通过2D指向交互增强与视觉内容的互动性,为人机交互和增强现实等应用开辟新的可能性。
  5. 小而精的设计理念:Molmo的体积相对较小,但在处理能力上可以与规模大十倍的竞争对手相媲美,提高了模型的效率,并为其在各种应用场景中的部署提供了更大的灵活性。
  6. 强大的功能:Molmo不仅能生成高质量的图像描述,还能精准理解图像内容,回答相关问题,展现出全面的能力。
  7. 模型多样性:Molmo系列包括多种不同大小的模型,从MolmoE-1B到Molmo-72B,满足不同需求和应用场景。
  8. 无需API或订阅:目前,用户无需获取API或订阅即可尝试Molmo,开发者计划在不久的将来公布所有的模型权重、字幕和微调数据以及源代码,供大家使用。

定价信息或价格:

目前,没有明确的定价信息显示Molmo是否免费或其定价细节。但是,由于Molmo是开源的,用户可以自由访问其模型权重和数据。

如何使用:

用户可以通过Molmo的官方网站进行公开演示,体验其功能。此外,Molmo的模型和数据集已经发布在Hugging Face上,供研究者和开发者使用。

官方介绍及更多演示:

模型下载

技术报告

在线体验:

适用场景:

  • 教育:作为智能教学助手,帮助学生理解图像和文本内容。
  • 娱乐:支持游戏、虚拟现实体验和创意内容生成。
  • 医疗:辅助医生理解医学图像,提供诊断支持。
  • 人机交互:通过2D指向交互,提供更自然直观的交互体验。

Molmo在多个学术基准测试中取得了优异的成绩,并在人类评估中排名第二,仅次于GPT-4o,展现了其强大的能力和潜力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2198329.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分布式事务讲解 - 2PC、3PC、TCC

分布式事务讲解 - 2PC、3PC、TCC 前置知识 BASE理论: BASE是Basically Availbale(基本可用)、Soft state(软状态)、Eventually consistent(最终一致性)三个词语的缩写。BASE理论是对CAP理论中AP的一个扩展,通过牺牲强一致性来获得可用性,当…

2024最新分别用sklearn和NumPy设计k-近邻法对鸢尾花数据集进行分类(包含详细注解与可视化结果)

本文章代码实现以下功能: 利用sklearn设计实现k-近邻法。 利用NumPy设计实现k-近邻法。 将设计的k-近邻法对鸢尾花数据集进行分类,通过准确率来验证所设计算法的正确性,并将分类结果可视化。 评估k取不同值时算法的精度,并通过…

基于SpringBoot的轻量级CRM管理系统+搭建教程

运行环境:jdk8 IntelliJ IDEA maven 宝塔面板 技术框架:SpringBoot lombok MyBatis 分页助手 freemarker SpringMVC SpringMail 系统功能: 这是一套轻量级的crm管理系统源码,基于SSM的SpringBoot架构。 这套源码用到很多潮流技术…

清华大模型公开课第二季 | Lecture 2 神经网络与大模型基础 Part 1

本文由readlecture.cn转录总结。ReadLecture专注于音、视频转录与总结,2小时视频,5分钟阅读,加速内容学习与传播。 大纲 引言 课程介绍 主讲人介绍 课程内容概述 神经网络基础知识 神经网络的定义和结构 神经元的基本单元 多维输入和权重…

从《被程序员耽搁的外卖员》看IT就业前景

《被程序员耽搁的外卖员》这部作品乍一看,似乎只是一个轻松幽默的故事,讲述一位外卖员因为学习编程而改变生活轨迹的小故事。然而,它在反映社会现实、揭示IT行业就业前景方面具有诸多启示。本文旨在通过此故事来分析当前IT就业的现状和未来发…

Spring Boot读取resources目录下文件(打成jar可用),并放入Guava缓存

1、文件所在位置&#xff1a; 2、需要Guava依赖&#xff1a; <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>23.0</version></dependency>3、启动时就读取放入缓存的代码&#xf…

​Leetcode 746. 使用最小花费爬楼梯​ 入门dp C++实现

问题&#xff1a;Leetcode 746. 使用最小花费爬楼梯 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你…

Linux源码阅读笔记-以太网驱动分析

驱动框架 Linux 内核网络设备驱动框架分别为四个模块&#xff0c;分别为网络协议借口模块、网络设备接口模块、设备驱动功能模块和网络设备与媒介模块。具体视图如下&#xff1a; 网络协议接口模块&#xff1a;主要功能 网络接口卡接收和发送数据在 Linux 内核当中处理流程如下…

LoRA技术详解---附实战代码

LoRA技术详解—附实战代码 引言 随着大语言模型规模的不断扩大&#xff0c;如何高效地对这些模型进行微调成为了一个重要的技术挑战。Low-Rank Adaptation&#xff08;LoRA&#xff09;技术应运而生&#xff0c;它通过巧妙的低秩分解方法&#xff0c;显著减少了模型微调时需要…

UNIAPP popper气泡弹层【unibest框架下】vue3+typescript

看了下市场的代码&#xff0c;要么写的不怎么好&#xff0c;要么过于复杂。于是把市场的代码下下来了自己改。200行代码撸了个弹出层组件。兼容H5和APP。 功能&#xff1a; 1)只支持上下左右4个方向的弹层不支持侧边靠齐 2)不对屏幕边界适配 3)支持弹层外边点击自动隐藏 4)支持…

重学SpringBoot3-集成Redis(八)之限时任务(延迟队列)

更多SpringBoot3内容请关注我的专栏&#xff1a;《SpringBoot3》 期待您的点赞&#x1f44d;收藏⭐评论✍ 重学SpringBoot3-集成Redis&#xff08;八&#xff09;之限时任务&#xff08;延迟队列&#xff09; 1. 延迟任务的场景2. Redis Sorted Set基本原理3. 使用 Redis Sorte…

粗糙表面的仿真和处理软件

首款基于粗糙表面的仿真和处理软件&#xff0c;该软件具有三种方法&#xff0c;主要是二维数字滤波法&#xff0c;相位频谱法和共轭梯度法。可以分别仿真具有高斯和非高斯分布的粗糙表面&#xff0c;其中非高斯表面利用Johnson转换系统进行变换给定偏度和峰度。对生成的粗糙表面…

Mysql高级篇(下)——数据库备份与恢复

Mysql高级篇&#xff08;下&#xff09;——数据库备份与恢复 一、物理备份与逻辑备份1、物理备份2、逻辑备份3、对比4、总结 二、mysqldump实现逻辑备份1、mysqldump 常用选项2、mysqldump 逻辑备份语法&#xff08;1&#xff09;备份一个数据库&#xff08;2&#xff09;备份…

linux自动挂载tf卡

本人使用的是armbian系统&#xff0c;ssh工具使用的是finalshell&#xff0c;挂载的是一张64G TF卡。 1.查看系统所检测到的磁盘&#xff0c;这里的 sda1检测到的硬盘但是没有被挂载 lsblk //查看信息 2.在根目录新建一个目录tfcard用于挂载硬盘&#xff0c;命令如下&#xf…

【万字长文】Word2Vec计算详解(一)

【万字长文】Word2Vec计算详解&#xff08;一&#xff09; 写在前面 本文用于记录本人学习NLP过程中&#xff0c;学习Word2Vec部分时的详细过程&#xff0c;本文与本人写的其他文章一样&#xff0c;旨在给出Word2Vec模型中的详细计算过程&#xff0c;包括每个模块的计算过程&a…

电商选品/跟卖| 亚马逊商品类爬取

电商跟卖,最重要是了解哪些商品可以卖, 哪些商品不能卖, 为了更好了解商品信息,我们会经常爬取商品类目的信息. 需求 亚马逊类目信息链接爬虫 打开亚马逊类目信息地址 https://www.amazon.com/gp/new-releases/automotive/refzg_bsnr_nav_automotive_0 一直递归下去&#x…

云原生(四十七) | PHP软件安装部署

文章目录 PHP软件安装部署 一、PHP软件部署步骤 二、安装与配置PHP PHP软件安装部署 一、PHP软件部署步骤 第一步&#xff1a;安装 EPEL 仓库 与 Remi仓库 第二步&#xff1a;启用 Remi 仓库 第三步&#xff1a;安装 PHP、PHP-FPM 第四步&#xff1a;启动并开机启用 PH…

10.8 sql语句查询(未知的)

1.查询结果去重 关键字:distinct (放在查询的后面) AC: select distinct university from user_profile 2.查询结果限制返回行数 关键字:limit AC: select device_id from user_profile limit 0,2 3.将查询后的列重新命名 关键字:as AC: select device_id as user_infos…

wildcard使用教程,解决绝大多数普通人的海外支付难题

许多人可能已经注意到,国外的一些先进AI工具对国内用户并不开放。而想要使用这些工具,我们通常会面临两个主要障碍:一是网络访问的限制,二是支付问题。网络问题很容易解决&#xff0c;难的是如何解决在国内充值海外软件。 今天给大家推荐一个工具——wildcard&#xff0c;用它…

【CSS in Depth 2 精译_046】7.1 CSS 响应式设计中的移动端优先设计原则(下)

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第一章 层叠、优先级与继承&#xff08;已完结&#xff09; 1.1 层叠1.2 继承1.3 特殊值1.4 简写属性1.5 CSS 渐进式增强技术1.6 本章小结 第二章 相对单位&#xff08;已完结&#xff09; 2.1 相对…