学员闯关手册:https://aicarrier.feishu.cn/wiki/ZcgkwqteZi9s4ZkYr0Gcayg1n1g?open_in_browser=true
课程视频:https://www.bilibili.com/video/BV1RM4m1279j/
课程文档:
https://github.com/InternLM/Tutorial/blob/camp3/docs/L1/OpenCompass/readme.md
关卡作业:https://github.com/InternLM/Tutorial/blob/camp3/docs/L1/OpenCompass/task.md
开发机平台:https://studio.intern-ai.org.cn/
开发机平台介绍:https://aicarrier.feishu.cn/wiki/GQ1Qwxb3UiQuewk8BVLcuyiEnHe
更多评测技巧请查看 https://opencompass.readthedocs.io/zh-cn/latest/get_started/quick_start.html 文档。
理论部分
实践部分
#开发机Cuda11.7-conda
#1、安装——面向GPU的环境安装
conda create -n opencompass python=3.10
conda activate opencompass
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 注意:一定要先 cd /root
cd /root
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
apt-get update
apt-get install cmake
pip install -r requirements.txt
pip install protobuf
#2、评测数据集
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip
python tools/list_configs.py internlm ceval
#3.1、使用命令行配置参数法进行评测
#打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py ,贴入以下代码
from opencompass.models import HuggingFaceCausalLM
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-1.8b-hf',
path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=100,
min_out_len=1,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
#环境变量配置
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU
python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug
#3.2、使用配置文件修改参数法进行评测
cd /root/opencompass/configs
touch eval_tutorial_demo.py
#eval_tutorial_demo.py
from mmengine.config import read_base
with read_base():
from .datasets.ceval.ceval_gen import ceval_datasets
from .models.hf_internlm.hf_internlm2_chat_1_8b import models as hf_internlm2_chat_1_8b_models
datasets = ceval_datasets
models = hf_internlm2_chat_1_8b_models
cd /root/opencompass
python run.py configs/eval_tutorial_demo.py --debug