OpenHarmony(鸿蒙南向开发)——标准系统方案之瑞芯微RK3568移植案例(上)

news2025/1/9 2:47:36

往期知识点记录:

  • 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总
  • 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~
  • 持续更新中……

本文章是基于瑞芯微RK3568芯片的DAYU200开发板,进行标准系统相关功能的移植,主要包括产品配置添加,内核启动、升级,音频ADM化,Camera,TP,LCD,WIFI,BT,vibrator、sensor、图形显示模块的适配案例总结,以及相关功能的适配。

产品配置和目录规划

产品配置

在产品//productdefine/common/device目录下创建以rk3568名字命名的json文件,并指定CPU的架构。//productdefine/common/device/rk3568.json配置如下:

{
    "device_name": "rk3568",
    "device_company": "rockchip",
    "target_os": "ohos",
    "target_cpu": "arm",
    "kernel_version": "",
    "device_build_path": "device/board/hihope/rk3568",
    "enable_ramdisk": true,   //是否支持ramdisk二级启动
    "build_selinux": true    // 是否支持selinux权限管理
}

在//productdefine/common/products目录下创建以产品名命名的rk3568.json文件。该文件用于描述产品所使用的SOC 以及所需的子系统。配置如下

{
  "product_name": "rk3568",
  "product_company" : "hihope",
  "product_device": "rk3568",
  "version": "2.0",
  "type": "standard",
  "parts":{
    "ace:ace_engine_standard":{},
    "ace:napi":{},
    ...
    "xts:phone_tests":{}
  }
}

主要的配置内容包括:

1.product_device:配置所使用的SOC。
2.type:配置系统的级别, 这里直接standard即可。
3.parts:系统需要启用的子系统。子系统可以简单理解为一块独立构建的功能块。

已定义的子系统可以在//build/subsystem_config.json中找到。当然你也可以定制子系统。

这里建议先拷贝Hi3516DV300开发板的配置文件,删除掉hisilicon_products这个子系统。这个子系统为Hi3516DV300 SOC编译内核,不适合rk3568。

目录规划

参考 Board和SoC解耦的设计思路 ,并把芯片适配目录规划为:

device
├── board                                --- 单板厂商目录
│   └── hihope                           --- 单板厂商名字:
│       └── rk3568                       --- 单板名:rk3568,主要放置开发板相关的驱动业务代码
└── soc									 --- SoC厂商目录
    └── rockchip                       --- SoC厂商名字:rockchip
        └── rk3568						 --- SoC Series名:rk3568,主要为芯片原厂提供的一些方案,以及闭源库等

vendor
└── hihope					
    └── rk3568         			 --- 产品名字:产品、hcs以及demo相关

内核启动

二级启动

二级启动简单来说就是将之前直接挂载sytem,从system下的init启动,改成先挂载ramdsik,从ramdsik中的init 启动,做些必要的初始化动作,如挂载system,vendor等分区,然后切到system下的init 。

Rk3568适配主要是将主线编译出来的ramdisk 打包到boot_linux.img中,主要有以下工作:

1.使能二级启动

在productdefine/common/device/rk3568.json 中使能enable_ramdisk。

{
    "device_name": "rk3568",
    "device_company": "hihope",
    "target_os": "ohos",
    "target_cpu": "arm",
    "kernel_version": "",
    "device_build_path": "device/hihope/build",
    "enable_ramdisk": true,
    "build_selinux": true
}

2.把主线编译出来的ramdsik.img 打包到boot_linux.img

配置:

由于rk 启动uboot 支持从ramdisk 启动,只需要在打包boot_linux.img 的配置文件中增加ramdisk.img ,因此没有使用主线的its格式,具体配置就是在内核编译脚本make-ohos.sh 中增加:

function make_extlinux_conf()
{
	dtb_path=$1
	uart=$2
	image=$3
	
	echo "label rockchip-kernel-5.10" > ${EXTLINUX_CONF}
	echo "	kernel /extlinux/${image}" >> ${EXTLINUX_CONF}
	echo "	fdt /extlinux/${TOYBRICK_DTB}" >> ${EXTLINUX_CONF}
	if [ "enable_ramdisk" == "${ramdisk_flag}" ]; then
		echo "	initrd /extlinux/ramdisk.img" >> ${EXTLINUX_CONF}
	fi
	cmdline="append earlycon=uart8250,mmio32,${uart} root=PARTUUID=614e0000-0000-4b53-8000-1d28000054a9 rw rootwait rootfstype=ext4"
	echo "  ${cmdline}" >> ${EXTLINUX_CONF}
}

打包

增加了打包boot镜像的脚本make-boot.sh,供编译完ramdisk,打包boot 镜像时调用, 主要内容:

genext2fs -B ${blocks} -b ${block_size} -d boot_linux -i 8192 -U boot_linux.img

调用make-boot.sh 的修改可以参考如下pr:

https://gitee.com/openharmony/build/pulls/569/files

INIT配置

init相关配置请参考 启动子系统的规范要求即可

音频

RK3568 Audio总体结构图

ADM适配方案介绍

RK3568平台适配ADM框架图

  1. ADM Drivers adapter

主要完成Codec/DMA/I2S驱动注册,使得ADM可以加载驱动节点;并注册ADM与Drivers交互的接口函数

  1. ADM Drivers impl

主要完成ADM Drivers adapter接口函数的实现,以及Codec_config.hcs/dai_config.hcs等配置信息的获取,并注册到对应的设备

  1. Linux Drivers

ADM Drivers impl可以直接阅读硬件手册,完成驱动端到端的配置;也可以借用Linux原生驱动实现与接口,减少开发者工作量。

目录结构
./device/board/hihope/rk3568/audio_drivers
├── codec
│   └── rk809_codec
│       ├── include
│       │   ├── rk809_codec_impl.h
│       │   └── rk817_codec.h
│       └── src
│           ├── rk809_codec_adapter.c
│           ├── rk809_codec_linux_driver.c
│           └── rk809_codec_ops.c
├── dai
│   ├── include
│   │   ├── rk3568_dai_linux.h
│   │   └── rk3568_dai_ops.h
│   └── src
│       ├── rk3568_dai_adapter.c
│       ├── rk3568_dai_linux_driver.c
│       └── rk3568_dai_ops.c
├── dsp
│   ├── include
│   │   └── rk3568_dsp_ops.h
│   └── src
│       ├── rk3568_dsp_adapter.c
│       └── rk3568_dsp_ops.c
├── include
│   ├── audio_device_log.h
│   └── rk3568_audio_common.h
└── soc
    ├── include
    │   └── rk3568_dma_ops.h
    └── src
        ├── rk3568_dma_adapter.c
        └── rk3568_dma_ops.c

RK3568适配ADM详细过程

梳理平台Audio框架

梳理目标平台的Audio结构,明确数据流与控制流通路。

  1. 针对RK3568平台,Audio的结构相对简单见RK3568 Audio总体结构图,Codec作为一个独立设备。I2C完成对设备的控制,I2S完成Codec设备与CPU之间的交互。
  2. 结合原理图整理I2S通道号,对应的引脚编号;I2C的通道号,地址等硬件信息。
  3. 获取Codec对应的datasheet,以及RK3568平台的Datasheet(包含I2S/DMA通道等寄存器的介绍)。
熟悉并了解ADM结构

ADM结构框图如下,Audio Peripheral Drivers和Platform Drivers为平台适配需要完成的工作。

结合第1步梳理出来的Audio结构分析,Audio Peripheral Drivers包含Rk809的驱动,Platform Drivers包含DMA驱动和I2S驱动。

需要适配的驱动ADM对应模块接口文件路径
RK809驱动Accessorydrivers/framework/include/audio/audio_accessory_if.h
DMA驱动platformdrivers/framework/include/audio/audio_platform_if.h
I2S驱动DAIdrivers/framework/include/audio/audio_dai_if.h.h
搭建驱动代码框架
配置HCS文件

在device_info.hcs文件中Audio下注册驱动节点

        audio :: host {
            hostName = "audio_host";
            priority = 60;
            device_dai0 :: device {
                device0 :: deviceNode {
                    policy = 1;
                    priority = 50;
                    preload = 0;
                    permission = 0666;
                    moduleName = "DAI_RK3568";
                    serviceName = "dai_service";
                    deviceMatchAttr = "hdf_dai_driver";
                }
            }
            device_codec :: device {
                device0 :: deviceNode {
                    policy = 1;
                    priority = 50;
                    preload = 0;
                    permission = 0666;
                    moduleName = "CODEC_RK809";
                    serviceName = "codec_service_0";
                    deviceMatchAttr = "hdf_codec_driver";
                }
            }
            device_codec_ex :: device {
                device0 :: deviceNode {
                    policy = 1;
                    priority = 50;
                    preload = 0;
                    permission = 0666;
                    moduleName = "CODEC_RK817";
                    serviceName = "codec_service_1";
                    deviceMatchAttr = "hdf_codec_driver_ex";
                }
            }
            device_dsp :: device {
                device0 :: deviceNode {
                    policy = 1;
                    priority = 50;
                    preload = 0;
                    permission = 0666;
                    moduleName = "DSP_RK3568";
                    serviceName = "dsp_service_0";
                    deviceMatchAttr = "hdf_dsp_driver";
                }
            }
            device_dma :: device {
                device0 :: deviceNode {
                    policy = 1;
                    priority = 50;
                    preload = 0;
                    permission = 0666;
                    moduleName = "DMA_RK3568";
                    serviceName = "dma_service_0";
                    deviceMatchAttr = "hdf_dma_driver";
                }
            }
            ......
        }

c

根据接入的设备,选择Codec节点还是Accessory节点,配置硬件设备对应的私有属性(包含寄存器首地址,相关control寄存器地址)涉及Codec_config.hcs和DAI_config.hcs

配置相关介绍见 Audio hcs配置章节以及ADM框架的audio_parse模块代码。

codec/accessory模块

1.将驱动注册到HDF框架中,代码片段如下,启动moduleName与HCS文件的中moduleName一致

struct HdfDriverEntry g_codecDriverEntry = {
   .moduleVersion = 1,
   .moduleName = "CODEC_HI3516",
   .Bind = CodecDriverBind,
   .Init = CodecDriverInit,
   .Release = CodecDriverRelease,
};
HDF_INIT(g_codecDriverEntry);

2.Codec模块需要填充:

g_codecData:codec设备的操作函数集和私有数据集。
g_codecDaiDeviceOps:codecDai的操作函数集,包括启动传输和参数配置等函数接口。
g_codecDaiData:codec的数字音频接口的操作函数集和私有数据集。

3.完成 bind、init和release函数的实现
4.验证

在bind和init函数加调试日志,编译版本并获取系统系统日志:

[    1.548624] [E/"rk809_codec_adapter"]  [Rk809DriverBind][line:258]: enter
[    1.548635] [E/"rk809_codec_adapter"]  [Rk809DriverBind][line:260]: success
[    1.548655] [E/"rk809_codec_adapter"]  [Rk809DriverInit][line:270]: enter
[    1.549050] [E/"rk809_codec_adapter"]  [GetServiceName][line:226]: enter
[    1.549061] [E/"rk809_codec_adapter"]  [GetServiceName][line:250]: success
[    1.549072] [E/"rk809_codec_adapter"]  [Rk809DriverInit][line:316]: g_chip->accessory.drvAccessoryName = codec_service_1
[    1.549085] [E/audio_core]  [AudioSocRegisterDai][line:86]: Register [accessory_dai] success.
[    1.549096] [E/audio_core]  [AudioRegisterAccessory][line:120]: Register [codec_service_1] success.
[    1.549107] [E/"rk809_codec_adapter"]  [Rk809DriverInit][line:323]: success!

DAI模块
1.将I2S驱动注册到HDF框架中,代码片段如下,启动moduleName与HCS文件的中moduleName一致

struct HdfDriverEntry g_daiDriverEntry = {
    .moduleVersion = 1,
    .moduleName = "DAI_RK3568",
    .Bind = DaiDriverBind,
    .Init = DaiDriverInit,
    .Release = DaiDriverRelease,
};
HDF_INIT(g_daiDriverEntry);

2.DAI模块填充:

struct AudioDaiOps g_daiDeviceOps = {
    .Startup = Rk3568DaiStartup,
    .HwParams = Rk3568DaiHwParams,
    .Trigger = Rk3568NormalTrigger,
};

struct DaiData g_daiData = {
    .Read = Rk3568DeviceReadReg,
    .Write = Rk3568DeviceWriteReg,
    .DaiInit = Rk3568DaiDeviceInit,
    .ops = &g_daiDeviceOps,
};

3.完成 bind、init和release函数的实现

4.验证

在bind/init函数加调试日志,编译版本并获取系统系统日志

[    1.549193] [I/device_node] launch devnode dai_service
[    1.549204] [E/HDF_LOG_TAG]  [DaiDriverBind][line:38]: entry!
[    1.549216] [E/HDF_LOG_TAG]  [DaiDriverBind][line:55]: success!
[    1.549504] [E/audio_core]  [AudioSocRegisterDai][line:86]: Register [dai_service] success.
[    1.549515] [E/HDF_LOG_TAG]  [DaiDriverInit][line:116]: success.

Platform模块
1.将DMA驱动注册到HDF框架中,代码片段如下,启动moduleName与HCS文件的中moduleName一致

struct HdfDriverEntry g_platformDriverEntry = {
    .moduleVersion = 1,
    .moduleName = "DMA_RK3568",
    .Bind = PlatformDriverBind,
    .Init = PlatformDriverInit,
    .Release = PlatformDriverRelease,
};
HDF_INIT(g_platformDriverEntry);

2.DMA模块需要填充:

struct AudioDmaOps g_dmaDeviceOps = {
    .DmaBufAlloc = Rk3568DmaBufAlloc,
    .DmaBufFree = Rk3568DmaBufFree,
    .DmaRequestChannel = Rk3568DmaRequestChannel,
    .DmaConfigChannel = Rk3568DmaConfigChannel,
    .DmaPrep = Rk3568DmaPrep,
    .DmaSubmit = Rk3568DmaSubmit,
    .DmaPending = Rk3568DmaPending,
    .DmaPause = Rk3568DmaPause,
    .DmaResume = Rk3568DmaResume,
    .DmaPointer = Rk3568PcmPointer,
};

struct PlatformData g_platformData = {
    .PlatformInit = AudioDmaDeviceInit,
    .ops = &g_dmaDeviceOps,
};

3.完成 bind、init和release函数的实现

4.验证

在bind和init函数加调试日志,编译版本并获取系统系统日志

[    1.548469] [E/rk3568_platform_adapter]  [PlatformDriverBind][line:42]: entry!
[    1.548481] [E/rk3568_platform_adapter]  [PlatformDriverBind][line:58]: success!
[    1.548492] [E/rk3568_platform_adapter]  [PlatformDriverInit][line:100]: entry. 
[    1.548504] [E/rk3568_platform_adapter]  [PlatformGetServiceName][line:67]: entry!
[    1.548515] [E/rk3568_platform_adapter]  [PlatformGetServiceName][line:91]: success!
[    1.548528] [E/audio_core]  [AudioSocRegisterPlatform][line:63]: Register [dma_service_0] success.
[    1.548536] [E/rk3568_platform_adapter]  [PlatformDriverInit][line:119]: success.
驱动适配
code/accessory模块
  1. 读取DTS文件,获取到对应设备节点,使用Linux原生的驱动注册函数,获取到对应device。
static int rk817_platform_probe(struct platform_device *pdev) {
    rk817_pdev = pdev;
    dev_info(&pdev->dev, "got rk817-codec platform_device");
    return 0;
}

static struct platform_driver rk817_codec_driver = {
	.driver = {
		   .name = "rk817-codec",                     // codec node in dts file
		   .of_match_table = rk817_codec_dt_ids,
		   },
	.probe = rk817_platform_probe,
	.remove = rk817_platform_remove,
};

2.读写寄存器函数封装 根据上述获取到的device, 使用Linux的regmap函数,开发者不需要获取模块的基地址 获取rk817的regmap代码段

g_chip = devm_kzalloc(&rk817_pdev->dev, sizeof(struct Rk809ChipData), GFP_KERNEL);
    if (!g_chip) {
        AUDIO_DEVICE_LOG_ERR("no memory");
        return HDF_ERR_MALLOC_FAIL;
    }
    g_chip->pdev = rk817_pdev;

    struct rk808 *rk808 = dev_get_drvdata(g_chip->pdev->dev.parent);
    if (!rk808) {
        AUDIO_DEVICE_LOG_ERR("%s: rk808 is NULL\n", __func__);
        ret = HDF_FAILURE;
        RK809ChipRelease();
		return ret;
    }
    g_chip->regmap = devm_regmap_init_i2c(rk808->i2c,
		&rk817_codec_regmap_config);
    if (IS_ERR(g_chip->regmap)) {
        AUDIO_DEVICE_LOG_ERR("failed to allocate regmap: %ld\n", PTR_ERR(g_chip->regmap));
        RK809ChipRelease();
		return ret;
    }

寄存器读写函数代码段

int32_t Rk809DeviceRegRead(uint32_t reg, uint32_t *val) 
  {
      if (regmap_read(g_chip->regmap, reg, val)) {
          AUDIO_DRIVER_LOG_ERR("read register fail: [%04x]", reg);
          return HDF_FAILURE;
      }

      return HDF_SUCCESS;
  }

  int32_t Rk809DeviceRegWrite(uint32_t reg, uint32_t value) {
      if (regmap_write(g_chip->regmap, reg, value)) {
          AUDIO_DRIVER_LOG_ERR("write register fail: [%04x] = %04x", reg, value);
          return HDF_FAILURE;
      }

      return HDF_SUCCESS;
  }

  int32_t Rk809DeviceRegUpdatebits(uint32_t reg, uint32_t mask, uint32_t value) {
      if (regmap_update_bits(g_chip->regmap, reg, mask, value)) {
          AUDIO_DRIVER_LOG_ERR("update register bits fail: [%04x] = %04x", reg, value);
          return HDF_FAILURE;
      }

      return HDF_SUCCESS;
  }

3.寄存器初始化函数

因为使用Linux的regmap函数,所以需要自行定义RegDefaultInit函数,读取hcs中initSeqConfig的寄存器以及数值来进行配置

RK809RegDefaultInit代码段

int32_t RK809RegDefaultInit(struct AudioRegCfgGroupNode **regCfgGroup)
{
  int32_t i;
  struct AudioAddrConfig *regAttr = NULL;

  if (regCfgGroup == NULL || regCfgGroup[AUDIO_INIT_GROUP] == NULL ||
     regCfgGroup[AUDIO_INIT_GROUP]->addrCfgItem == NULL || regCfgGroup[AUDIO_INIT_GROUP]->itemNum <= 0) {
     AUDIO_DEVICE_LOG_ERR("input invalid parameter.");

     return HDF_ERR_INVALID_PARAM;
  }

  regAttr = regCfgGroup[AUDIO_INIT_GROUP]->addrCfgItem;

  for (i = 0; i < regCfgGroup[AUDIO_INIT_GROUP]->itemNum; i++) {
     Rk809DeviceRegWrite(regAttr[i].addr, regAttr[i].value);
  }

  return HDF_SUCCESS;
}

4.封装控制接口的读写函数

设置控制读写函数为RK809CodecReadReg和RK809CodecWriteReg

struct CodecData g_rk809Data = {
    .Init = Rk809DeviceInit,
    .Read = RK809CodecReadReg,
    .Write = RK809CodecWriteReg,
};

struct AudioDaiOps g_rk809DaiDeviceOps = {
    .Startup = Rk809DaiStartup,
    .HwParams = Rk809DaiHwParams,
	.Trigger = RK809NormalTrigger,
};

struct DaiData g_rk809DaiData = {
    .DaiInit = Rk809DaiDeviceInit,
    .ops = &g_rk809DaiDeviceOps,
};

封装控制接口的读写函数

因为原来的读写原型,涉及三个参数(unsigned long virtualAddress,uint32_t reg, uint32_t *val),其中virtualAddress我们并不需要用到,所以封装个接口即可,封装如下

int32_t RK809CodecReadReg(unsigned long virtualAddress,uint32_t reg, uint32_t *val)
{
    if (val == NULL) {
        AUDIO_DRIVER_LOG_ERR("param val is null.");
        return HDF_FAILURE;
    }
    if (Rk809DeviceRegRead(reg, val)) {
        AUDIO_DRIVER_LOG_ERR("read register fail: [%04x]", reg);
        return HDF_FAILURE;
    }
    ADM_LOG_ERR("read reg 0x[%02x] = 0x[%02x]",reg,*val);
    return HDF_SUCCESS;
}

int32_t RK809CodecWriteReg(unsigned long virtualAddress,uint32_t reg, uint32_t value)
{
    if (Rk809DeviceRegWrite(reg, value)) {
        AUDIO_DRIVER_LOG_ERR("write register fail: [%04x] = %04x", reg, value);
        return HDF_FAILURE;
    }    
    ADM_LOG_ERR("write reg 0x[%02x] = 0x[%02x]",reg,value);
    return HDF_SUCCESS;
}

5.其他ops函数

  • Rk809DeviceInit,读取hcs文件,初始化Codec寄存器,同时将对应的control配置(/* reg, rreg, shift, rshift, min, max, mask, invert, value */添加到kcontrol,便于dispatch contro进行控制
  • Rk809DaiStartup, 读取hcs文件,配置可选设备(codec/accessory)的控制寄存器
  • Rk809DaiHwParams, 根据hal下发的audio attrs(采样率、format、channel等),配置对应的寄存器
  • RK809NormalTrigger,根据hal下发的操作命令码,操作对应的寄存器,实现Codec的启动停止、录音和放音的切换等

DAI(i2s)模块
1.读写寄存器函数 思路与Codec模块的一致,读取Linux DTS文件,使用Linux的regmap函数完成寄存器的读写操作

int32_t Rk3568DeviceReadReg(unsigned long regBase, uint32_t reg, uint32_t *val)
 {
     AUDIO_DEVICE_LOG_ERR("entry");
     (void)regBase;
     struct device_node *dmaOfNode = of_find_node_by_path("/i2s@fe410000");
     if(dmaOfNode == NULL) {
         AUDIO_DEVICE_LOG_ERR("of_node is NULL.");
     }
     struct platform_device *platformdev = of_find_device_by_node(dmaOfNode);
     struct rk3568_i2s_tdm_dev *i2s_tdm = dev_get_drvdata(&platformdev->dev);
     
     (void)regBase;
     if (regmap_read(i2s_tdm->regmap, reg, val)) {
         AUDIO_DEVICE_LOG_ERR("read register fail: [%04x]", reg);
         return HDF_FAILURE;
     }
     return HDF_SUCCESS;
 }

 int32_t Rk3568DeviceWriteReg(unsigned long regBase, uint32_t reg, uint32_t value)
 {    
     AUDIO_DEVICE_LOG_ERR("entry");
     (void)regBase;
     struct device_node *dmaOfNode = of_find_node_by_path("/i2s@fe410000");
     if(dmaOfNode == NULL) {
         AUDIO_DEVICE_LOG_ERR("of_node is NULL.");
     }
     struct platform_device *platformdev = of_find_device_by_node(dmaOfNode);
     struct rk3568_i2s_tdm_dev *i2s_tdm = dev_get_drvdata(&platformdev->dev);
     if (regmap_write(i2s_tdm->regmap, reg, value)) {
         AUDIO_DEVICE_LOG_ERR("write register fail: [%04x] = %04x", reg, value);
         return HDF_FAILURE;
     }
     return HDF_SUCCESS;
 }

2.其他ops函数

  • Rk3568DaiDeviceInit 原始框架,主要完成DAI_config.hcs参数列表的读取,与HwParams结合,完成参数的设置。
  • Rk3568DaiHwParams 主要完成I2S MCLK/BCLK/LRCLK时钟配置。

1.根据不同采样率计算MCLK

    int32_t RK3568I2sTdmSetSysClk(struct rk3568_i2s_tdm_dev *i2s_tdm, const struct AudioPcmHwParams *param)
    {
        /* Put set mclk rate into rockchip_i2s_tdm_set_mclk() */
        uint32_t sampleRate = param->rate;
        uint32_t mclk_parent_freq = 0;
        switch (sampleRate) {
            case AUDIO_DEVICE_SAMPLE_RATE_8000:
            case AUDIO_DEVICE_SAMPLE_RATE_16000:
            case AUDIO_DEVICE_SAMPLE_RATE_24000:
            case AUDIO_DEVICE_SAMPLE_RATE_32000:
            case AUDIO_DEVICE_SAMPLE_RATE_48000:
            case AUDIO_DEVICE_SAMPLE_RATE_64000:
            case AUDIO_DEVICE_SAMPLE_RATE_96000:
            mclk_parent_freq = i2s_tdm->bclk_fs * AUDIO_DEVICE_SAMPLE_RATE_192000;
            break;
            case AUDIO_DEVICE_SAMPLE_RATE_11025:
            case AUDIO_DEVICE_SAMPLE_RATE_22050:
            case AUDIO_DEVICE_SAMPLE_RATE_44100:

            mclk_parent_freq = i2s_tdm->bclk_fs * AUDIO_DEVICE_SAMPLE_RATE_176400;
            break;
            default:
            AUDIO_DEVICE_LOG_ERR("Invalid LRCK freq: %u Hz\n", sampleRate);
                return HDF_FAILURE;
        }
        i2s_tdm->mclk_tx_freq = mclk_parent_freq;
        i2s_tdm->mclk_rx_freq = mclk_parent_freq;

        return HDF_SUCCESS;
    }

2.根据获取的mclk,计算BCLK/LRclk分频系数

  • Rk3568NormalTrigger 根据输入输出类型,以及cmd(启动/停止/暂停/恢复),完成一系列配置:

1.mclk的启停
2.DMA搬运的启停
3.传输的启停 详细实现见代码,参考Linux原生I2s驱动对应接口函数

    // 启动/恢复流程
    if (streamType == AUDIO_RENDER_STREAM) {
        clk_prepare_enable(i2s_tdm->mclk_tx);
        regmap_update_bits(i2s_tdm->regmap, I2S_DMACR,
                   I2S_DMACR_TDE_ENABLE,
                   I2S_DMACR_TDE_ENABLE);
    } else {
        clk_prepare_enable(i2s_tdm->mclk_rx);
        regmap_update_bits(i2s_tdm->regmap, I2S_DMACR,
                   I2S_DMACR_RDE_ENABLE,
                   I2S_DMACR_RDE_ENABLE);
        if (regmap_read(i2s_tdm->regmap, I2S_DMACR, &val)) {
            AUDIO_DEVICE_LOG_ERR("read register fail: [%04x]", I2S_DMACR);
            return ;
            }
        AUDIO_DEVICE_LOG_ERR("i2s reg: 0x%x = 0x%x ", I2S_DMACR, val);
    }

    if (atomic_inc_return(&i2s_tdm->refcount) == 1) {
        regmap_update_bits(i2s_tdm->regmap, I2S_XFER,
                   I2S_XFER_TXS_START |
                   I2S_XFER_RXS_START,
                   I2S_XFER_TXS_START |
                   I2S_XFER_RXS_START);
        if (regmap_read(i2s_tdm->regmap, I2S_XFER, &val)) {
            AUDIO_DEVICE_LOG_ERR("read register fail: [%04x]", I2S_XFER);
            return ;
            }
        AUDIO_DEVICE_LOG_ERR("i2s reg: 0x%x = 0x%x ", I2S_XFER, val);
    }

Platform(DMA)模块
ops函数相关函数

1.Rk3568DmaBufAlloc/Rk3568DmaBufFree

获取DMA设备节点,参考I2s设备获取方式,使用系统函数dma_alloc_wc/dma_free_wc,完成DMA虚拟内存与物理内存的申请/释放

2.Rk3568DmaRequestChannel

使用Linux DMA原生接口函数获取DMA传输通道,dma_request_slave_channel

dmaRtd->dmaChn[streamType] = dma_request_slave_channel(dmaDevice, dmaChannelNames[streamType]);

3.Rk3568DmaConfigChannel

   //设置通道配置参数
   // 放音通道参数配置
   slave_config.direction = DMA_MEM_TO_DEV;
   slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
   slave_config.dst_addr = I2S1_ADDR + I2S_TXDR;
   slave_config.dst_maxburst = 8;
   // 录音通道参数配置
   slave_config.direction = DMA_DEV_TO_MEM;
   slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
   slave_config.src_addr = I2S1_ADDR + I2S_RXDR;
   slave_config.src_maxburst = 8;

   //使用Linux DMA原生接口函数完成DMA通道配置
   ret = dmaengine_slave_config(dmaChan, &slave_config);
   if (ret != 0) {
       AUDIO_DEVICE_LOG_ERR("dmaengine_slave_config failed");
       return HDF_FAILURE;
   }

4.Rk3568DmaSubmit/Rk3568DmaPending

使用Linux DMA原生接口函数dmaengine_prep_dma_cyclic,初始化一个具体的周期性的DMA传输描述符dmaengine_submit接口将该描述符放到传输队列上,然后调用dma_async_issue_pending接口,启动传输。

5.Rk3568PcmPointer

第4步完成之后,ADM框架调用Rk3568PcmPointer,循环写cirBuf,计算pointer

  
   dma_chn = dmaRtd->dmaChn[DMA_TX_CHANNEL];
   buf_size = data->renderBufInfo.cirBufSize;
   dmaengine_tx_status(dma_chn, dmaRtd->cookie[DMA_TX_CHANNEL], &dma_state);
   if (dma_state.residue) {
       currentPointer = buf_size - dma_state.residue;
       *pointer = BytesToFrames(data->pcmInfo.frameSize, currentPointer);
   } else {
       *pointer = 0;
   }
  1. Rk3568DmaPause

使用Linux DMA原生接口函数dmaengine_terminate_async,停止DMA传输

     dmaengine_terminate_async(dmaChan);
  1. Rk3568DmaResume

暂停使用的DMA停止函数,对应恢复,相当于重启DMA传输,执行Rk3568DmaSubmit/Rk3568DmaPending相关操作即可完成

适配中遇到问题与解决方案
  1. 播放一段时间后,停止播放,持续有尖锐的很小的声音 问题原因:播放停止后,Codec相关器件没有下电 解决方案:注册Codec的trigger函数,当接收到Cmd为Stop时,对Codec进行下电

  2. 播放一段时间后,停止播放,然后重新播放没有声音 问题原因:DMA驱动的PAUSE接口函数,并未停止DMA传输 解决方案:暂停状态不再使用DMA的PAUSE函数,而是使用DAM传输停止接口; 相对应的,恢复函数的业务逻辑相当于重启DMA传输,执行 Rk3568DmaSubmit/Rk3568DmaPending相关操作即可完成

  3. 播放存在杂音 问题原因:DMA数据搬运pointer位置不正确 解决方案:Rk3568PcmPointer函数返回值为DMA搬运的内存位置,用缓存区buf与dma_state.residue的差值计算

  4. 可以放音,但Mclk引脚没有时钟信号 问题原因:DTS文件pin-ctrl没有配置mclk的引脚 解决方案:修改DTS文件

Camera

基本概念

OpenHarmony相机驱动框架模型对上实现相机HDI接口,对下实现相机Pipeline模型,管理相机各个硬件设备。各层的基本概念如下。

  1. HDI实现层:对上实现OHOS相机标准南向接口。

  2. 框架层:对接HDI实现层的控制、流的转发,实现数据通路的搭建、管理相机各个硬件设备等功能。

  3. 适配层:屏蔽底层芯片和OS差异,支持多平台适配。

Camera驱动框架介绍

源码框架介绍

Camera 驱动框架所在的仓为:drivers_peripheral,源码目录为:“drivers/peripheral/camera”。

|-- README_zh.md
|-- figures
|  -- logic-view-of-modules-related-to-this-repository_zh.png
|-- hal
|  |-- BUILD.gn               #Camera驱动框架构建入口
|  |-- adapter                 #平台适配层,适配平台
|  |-- buffer_manager
|  |-- camera.gni               #定义组件所使用的全局变量
|  |-- device_manager
|  |-- hdi_impl
|  |-- include
|  |-- init                   #demo sample
|  |-- pipeline_core
|  |-- test                   #测试代码
|  |-- utils
|-- hal_c                    #为海思平台提供专用C接口
|  |-- BUILD.gn
|  |-- camera.gni
|  |-- hdi_cif
|  |-- include
|-- interfaces                  #HDI接口
  |-- hdi_ipc
|-- hdi_passthrough
   |-- include

Camera hcs文件是每个chipset可配置的。所以放在chipset相关的仓下。以rk3568为例。仓名为: vendor_hihope,源码目录为:“vendor/hihope/rk3568/hdf_config/uhdf/camera”。

├── hdi_impl
│   └── camera_host_config.hcs
└── pipeline_core
    ├── config.hcs
    ├── ipp_algo_config.hcs
    └── params.hcs

Camera chipset 相关代码路径以3568为例仓名为:device_hihope。路径为:device/board/hihope/rk3568/camera/

├── BUILD.gn
├── demo
│   └── include
│       └── project_camera_demo.h
├── device_manager
│   ├── BUILD.gn
│   ├── include
│   │   ├── imx600.h
│   │   ├── project_hardware.h
│   │   └── rkispv5.h
│   └── src
│       ├── imx600.cpp
│       └── rkispv5.cpp
├── driver_adapter
│   └── test
│       ├── BUILD.gn
│       ├── unittest
│       │   ├── include
│       │   │   └── utest_v4l2_dev.h
│       │   └── src
│       │       └── utest_v4l2_dev.cpp
│       └── v4l2_test
│           └── include
│               └── project_v4l2_main.h
└── pipeline_core
    ├── BUILD.gn
    └── src
        ├── ipp_algo_example
        │   └── ipp_algo_example.c
        └── node
            ├── rk_codec_node.cpp
            └── rk_codec_node.h     

Camera 驱动框架配置

RK3568 配置文件路径:

“vendor/hihope/rk3568/hdf_config/uhdf/device_info.hcs”。说明:其他平台可参考RK3568适配。

        hdi_server :: host {
            hostName = "camera_host";
            priority = 50;
            caps = ["DAC_OVERRIDE", "DAC_READ_SEARCH"];
            camera_device :: device {
                 device0 :: deviceNode {
                     policy = 2;
                     priority = 100;
                     moduleName = "libcamera_hdi_impl.z.so";
                     serviceName = "camera_service";
                 }
             }
            ...
        }

参数说明: Host:一个host节点即为一个独立进程,如果需要独立进程,新增属于自己的host节点。 Policy: 服务发布策略,HDI服务请设置为“2” moduleName: 驱动实现库名。 serviceName:服务名称,请保持全局唯一性。

Camera_host驱动实现入口

文件路径:drivers/peripheral/camera/interfaces/hdi_ipc/server/src/camera_host_driver.cpp

分发设备服务消息 cmd Id:请求消息命令字。 Data:其他服务或者IO请求数据。 Reply:存储返回消息内容数据。

static int32_t CameraServiceDispatch(struct HdfDeviceIoClient *client, int cmdId,
    struct HdfSBuf *data, struct HdfSBuf *reply)
{
    HdfCameraService *hdfCameraService = CONTAINER_OF(client->device->service, HdfCameraService, ioservice);
      return CameraHostServiceOnRemoteRequest(hdfCameraService->instance, cmdId, data, reply);
 }

绑定设备服务:初始化设备服务对象和资源对象。

int HdfCameraHostDriverBind(HdfDeviceObject *deviceObject)
{
    HDF_LOGI("HdfCameraHostDriverBind enter!");
    if (deviceObject == nullptr) {
        HDF_LOGE("HdfCameraHostDriverBind: HdfDeviceObject is NULL !");
        return HDF_FAILURE;
}

驱动初始化函数: 探测并初始化驱动程序

int HdfCameraHostDriverInit(struct HdfDeviceObject *deviceObject)
{
      return HDF_SUCCESS;
}

驱动资源释放函数 : 如已经绑定的设备服务对象

  void HdfCameraHostDriverRelease(HdfDeviceObject *deviceObject)
  {
          if (deviceObject == nullptr || deviceObject->service == nullptr) {
          HDF_LOGE("%{public}s deviceObject or deviceObject->service  is NULL!", __FUNCTION__);
                return;
      }
          HdfCameraService *hdfCameraService = CONTAINER_OF(deviceObject->service, HdfCameraService, ioservice);
      if (hdfCameraService == nullptr) {
           HDF_LOGE("%{public}s hdfCameraService is NULL!", __FUNCTION__);
           return;
       }

定义驱动描述符:将驱动代码注册给驱动框架。

 struct HdfDriverEntry g_cameraHostDriverEntry = {
      .moduleVersion = 1,
      .moduleName = "camera_service",
      .Bind = HdfCameraHostDriverBind,
      .Init = HdfCameraHostDriverInit,
      .Release = HdfCameraHostDriverRelease,
  };   

Camera配置信息介绍

Camera模块内部,所有配置文件使用系统支持的HCS类型的配置文件,HCS类型的配置文件,在编译时,会转成HCB文件,最终烧录到开发板里的配置文件即为HCB格式,代码中通过HCS解析接口解析HCB文件,获取配置文件中的信息。

 hc_gen("build_camera_host_config") {
    sources = [ rebase_path(
                  "$camera_product_name_path/hdf_config/uhdf/camera/hdi_impl/camera_host_config.hcs") ]
  }
        
  ohos_prebuilt_etc("camera_host_config.hcb") {
          deps = [ ":build_camera_host_config" ]
    hcs_outputs = get_target_outputs(":build_camera_host_config")
          source = hcs_outputs[0]
    relative_install_dir = "hdfconfig"
          install_images = [ chipset_base_dir ]
    subsystem_name = "hdf"
          part_name = "camera_device_driver"
  }

Camera适配介绍

新产品平台适配简介

drivers/peripheral/camera/hal/camera.gni 文件中可根据编译时传入的product_company product_name和device_name调用不同chipset的product.gni

  if (defined(ohos_lite)) {
          import("//build/lite/config/component/lite_component.gni")
    import(
              "//device/soc/hisilicon/common/hal/media/camera/hi3516dv300/linux_standard/camera/product.gni")
  } else {
          import("//build/ohos.gni")
    if ("${product_name}" == "ohos-arm64") {
            import(
          "//drivers/peripheral/camera/hal/adapter/chipset/rpi/rpi3/device/camera/product.gni")
          } else if ("${product_name}" == "Hi3516DV300") {
      import(
                "//device/soc/hisilicon/common/hal/media/camera/hi3516dv300/linux_standard/camera/product.gni")
    } else if ("${product_name}" == "watchos") {
            import(
          "//device/soc/hisilicon/common/hal/media/camera/hi3516dv300/linux_standard/camera/product.gni")
          } else {
      import(
                "//device/board/${product_company}/${device_name}/camera/product.gni")
    }
        }

在如下路径的product.gni指定了编译不同chipset相关的代码的路径:

 device/${product_company}/${device_name}/camera/

如下是rk3568的product.gni:

  camera_device_name_path = "//device/board/${product_company}/${device_name}"
        is_support_v4l2 = true
  if (is_support_v4l2) {
          is_support_mpi = false
    defines += [ "SUPPORT_V4L2" ]
          chipset_build_deps = "$camera_device_name_path/camera/:chipset_build"
    camera_device_manager_deps =
              "$camera_device_name_path/camera/src/device_manager:camera_device_manager"
    camera_pipeline_core_deps =
              "$camera_device_name_path/camera/src/pipeline_core:camera_pipeline_core"
  }

product.gni中指定了chipset_build_deps camera_device_manager_deps 和 camera_pipeline_core_deps 三个代码编译路径。该路径在drivers/peripheral/camera/hal/BUILD.gn中会被使用

框架适配介绍

以V4l2为例,pipeline的连接方式是在HCS配置文件中配置连接,数据源我们称之为SourceNode,主要包括硬件设备的控制、数据流的轮转等。 ISPNode可根据需要确定是否添加此Node,因为在很多操作上其都可以和SensorNode统一为SourceNode。SinkNode为pipeline中数据传输的重点,到此处会将数据传输回buffer queue中。

pipeline中的Node是硬件/软件模块的抽象,所以对于其中硬件模块Node,其是需要向下控制硬件模块的,在控制硬件模块前,需要先获取其对应硬件模块的deviceManager,通过deviceManager向下传输控制命令/数据buffer,所以deviceManager中有一个v4l2 device manager抽象模块,用来创建各个硬件设备的manager、controller.如上sensorManager、IspManager,sensorController等,所以v4l2 device manager其实是各个硬件设备总的一个管理者。

deviceManager中的controller和驱动适配层直接交互。

基于以上所描述,如需适配一款以linux v4l2框架的芯片平台,只需要修改适配如上图中颜色标记模块及HCS配置文件(如为标准v4l2框架,基本可以延用当前已适配代码),接下来单独介绍修改模块。

主要适配添加如下目录:

“vendor/hihope/rk3568/hdf_config/uhdf/camera/”:当前芯片产品的HCS配置文件目录。

“device/hihope/rk3568/camera/”:当前芯片产品的代码适配目录。

“drivers/peripheral/camera/hal/adapter/platform/v4l2”:平台通用公共代码。

HCS配置文件适配介绍
  ├── hdi_impl
  │   └── camera_host_config.hcs
  └── pipeline_core
      ├── config.hcs
      ├── ipp_algo_config.hcs
      └── params.hcs

以RK3568开发板为例,其hcs文件应该放在对应的路径中。

 vendor/${product_company}/${product_name}/ hdf_config/uhdf/camera/  

template ability {
  logicCameraId = "lcam001";
  physicsCameraIds = [
  "CAMERA_FIRST",
  "CAMERA_SECOND"
  ];
metadata {
   aeAvailableAntiBandingModes = [
       "OHOS_CONTROL_AE_ANTIBANDING_MODE_OFF",
       "OHOS_CONTROL_AE_ANTIBANDING_MODE_50HZ",
       "OHOS_CONTROL_AE_ANTIBANDING_MODE_60HZ",
       "OHOS_CONTROL_AE_ANTIBANDING_MODE_AUTO"
        ];

hdi_impl下的“camera_host_config.hcs”为物理/逻辑Camera配置、能力配置,此处的物理/逻辑Camera配置,需要在hal内部使用,逻辑Camera及能力配置需要上报给上层,请按照所适配的芯片产品添加其能力配置。其中所用的能力值为键值对,定义在//drivers/peripheral/camera/hal/hdi_impl/include/camera_host/metadata_enum_map.h中。

      normal_preview :: pipeline_spec {
      name = "normal_preview";
            v4l2_source :: node_spec {
          name = "v4l2_source#0";
                status = "new";
          out_port_0 :: port_spec {
                    name = "out0";
              peer_port_name = "in0";
                    peer_port_node_name = "sink#0";
              direction = 1;
                    width = 0;
              height = 0;
                    format = 0;
          }
            }
      sink :: node_spec {
                name = "sink#0";
          status = "new";
                stream_type = "preview";
          in_port_0 :: port_spec {
                    name = "in0";
              peer_port_name = "out0";
                    peer_port_node_name = "v4l2_source#0";
              direction = 0;
                }
      }
    }

pipeline_core下的“config.hcs”为pipeline的连接方式,按场景划分每一路流由哪些Node组成,其连接方式是怎样的。

上面为preview场景的示例,normal_preview为该场景的名称,source和sink为Node,source为数据数据源端,sink为末端,source为第一个node,node的名称是source#0,status、in/out_port分别为Node状态及输入/输出口的配置。

以in_port_0为例,name = “in0”代表它的输入为“port0”,它的对端为source node的port口out0口,direction为它的源Node和对端Node是否为直连方式。如新添加芯片产品,必须按实际连接方式配置此文件。

新增功能node时需继承NodeBase类,且在cpp文件中注册该node。具体可参考//drivers/peripheral/camera/hal/pipeline_core/nodes/src下已经实现的node。

 root {
  module = "";
        template stream_info {
      id = 0;
            name = "";
  }
        template scene_info {
      id = 0;
            name = "";
  }
        preview :: stream_info {
      id = 0;
            name = "preview";
  }
        video :: stream_info {
      id = 1;
            name = "video";
  }

param.hcs为场景、流类型名及其id定义,pipeline内部是以流id区分流类型的,所以此处需要添加定义。

Chipset 和Platform适配介绍

platform为平台性公共代码,如linux标准v4l2适配接口定义,为v4l2框架适配的通用node.以及为v4l2框架适配的通用device_manager等。目录结构如下:

  drivers/peripheral/camera/hal/adapter/platform
  ├── mpp
  │   └── src
  │       ├── device_manager
  │       └── pipeline_core
  └── v4l2
      └── src
          ├── device_manager
          ├── driver_adapter
          └── pipeline_core

“platform”目录下的“v4l2”包含了“src”, “src”中“driver_adapter”为linux v4l2标准适配接口,如有定制化功能需求,可继承driver_adapter,将定制化的具体功能接口放在chipset中实现。如无芯片定制化功能,可直接使用已有的driver_adapter。

platform目录下的Nodes为依据linux v4l2标准实现的硬件模块v4l2_source_node和uvc_node(usb热插拔设备,此模块也为linux标准接口,可直接使用),如下图为v4l2_source_node的接口声明头文件。

 namespace OHOS::Camera {
  class V4L2SourceNode : public SourceNode {
        public:
      V4L2SourceNode(const std::string& name, const std::string& type);
            ~V4L2SourceNode() override;
      RetCode Init(const int32_t streamId) override;
            RetCode Start(const int32_t streamId) override;
      RetCode Flush(const int32_t streamId) override;
            RetCode Stop(const int32_t streamId) override;
      RetCode GetDeviceController();
            void SetBufferCallback() override;
      RetCode ProvideBuffers(std::shared_ptr<FrameSpec> frameSpec) override;
        
  private:
            std::mutex                              requestLock_;
      std::map<int32_t, std::list<int32_t>>   captureRequests_ = {};
            std::shared_ptr<SensorController>       sensorController_ = nullptr;
      std::shared_ptr<IDeviceManager>     deviceManager_ = nullptr;
        };
  } // namespace OHOS::Camera

Init接口为模块初始化接口。

Start为使能接口,比如start stream功能等。

Stop为停止接口。

GetDeviceController为获取deviceManager对应的controller接口。

chipset为具体某芯片平台相关代码,例如,如和“rk3568”开发板 为例。device_manager目录下可存放该开发板适配过的sensor的相关配置文件。pipeline_core路径下可以存放由chipset开发者为满足特点需求增加的pipeline node等。

 device/board/hihope/rk3568/camera
  ├── BUILD.gn
  ├── camera_demo
  │   └── project_camera_demo.h
  ├── include
  │   └── device_manager
  ├── product.gni
  └── src
      ├── device_manager
      ├── driver_adapter
      └── pipeline_core

device/board/hihope/rk3568/camera/目录包含了“include”和“src”,“camera_demo”“src”中“device­­_manager”中包含了chipset 适配的sensor的文件,配合platform下device_manager的设备管理目录,主要对接pipeline,实现平台特有的硬件处理接口及数据buffer的下发和上报、metadata的交互。

下图为device_manager的实现框图,pipeline控制管理各个硬件模块,首先要获取对应设备的manager,通过manager获取其对应的controller,controller和对应的驱动进行交互 。

deviceManager中需要实现关键接口介绍。

      class SensorController : public IController {
      public:
          SensorController();
          explicit SensorController(std::string hardwareName);
          virtual ~SensorController();
          RetCode Init();
          RetCode PowerUp();
          RetCode PowerDown();
          RetCode Configure(std::shared_ptr<CameraStandard::CameraMetadata> meta);
          RetCode Start(int buffCont, DeviceFormat& format);
          RetCode Stop();
          RetCode SendFrameBuffer(std::shared_ptr<FrameSpec> buffer);
          void SetNodeCallBack(const NodeBufferCb cb);
          void SetMetaDataCallBack(const MetaDataCb cb);
          void BufferCallback(std::shared_ptr<FrameSpec> buffer);
          void SetAbilityMetaDataTag(std::vector<int32_t> abilityMetaDataTag);
    } 

PowerUp为上电接口,OpenCamera时调用此接口进行设备上电操作。 PowerDown为下电接口,CloseCamera时调用此接口进行设备下电操作。 Configures为Metadata下发接口,如需设置metadata参数到硬件设备,可实现此接口进行解析及下发。 Start为硬件模块使能接口,pipeline中的各个node进行使能的时候,会去调用,可根据需要定义实现,比如sensor的起流操作就可放在此处进行实现。 Stop和Start为相反操作,可实现停流操作。 SendFrameBuffer为每一帧buffer下发接口,所有和驱动进行buffer交互的操作,都是通过此接口进行的。 SetNodeCallBack为pipeline,通过此接口将buffer回调函数设置到devicemanager。 SetMetaDataCallBack为metadata回调接口,通过此接口将从底层获取的metadata数据上报给上层。 BufferCallback上传每一帧已填充数据buffer的接口,通过此接口将buffer上报给pipeline。 SetAbilityMetaDataTag设置需要从底层获取哪些类型的metadata数据,因为框架支持单独获取某一类型或多类型的硬件设备信息,所以可以通过此接口,获取想要的metadata数据。

其余接口可参考“drivers/peripheral/camera/hal/adapter/platform/v4l2/src/device_manager/”

IPP适配介绍

IPP是pipeline 中的一个算法插件模块,由ippnode加载,对流数据进行算法处理,ippnode支持同时多路数据输入,只支持一路数据输出。ippnode加载算法插件通过如下hcs文件指定: vendor/ p r o d u c t c o m p a n y / {product_company}/ productcompany/{product_name}/hdf_config/uhdf/camera/pipeline_core/ipp_algo_config.hcs 其中:

  root {
     module="sample";
     ipp_algo_config {
     algo1 {
          name = "example";
          description = "example algorithm";
          path = "libcamera_ipp_algo_example.z.so";
          mode = "IPP_ALGO_MODE_NORMAL";
     }
     }
  }

name:算法插件名称 description:描述算法插件的功能 path:算法插件所在路径 mode:算法插件所运行的模式

算法插件可运行的模式由 drivers/peripheral/camera/hal/pipeline_core/ipp/include/ipp_algo.h中的IppAlgoMode提供,可以根据需要进行扩展。

  enum IppAlgoMode {
      IPP_ALGO_MODE_BEGIN,
      IPP_ALGO_MODE_NORMAL = IPP_ALGO_MODE_BEGIN,
      IPP_ALGO_MODE_BEAUTY,
      IPP_ALGO_MODE_HDR,
      IPP_ALGO_MODE_END
  };

算法插件由gn文件 device/ p r o d u c t c o m p a n y / {product_company}/ productcompany/{device_name}/camera/BUILD.gn进行编译,算法插件需实现如下接口(接口由ipp_algo.h指定)供ippnode调用:

  typedef struct IppAlgoFunc {
      int (*Init)(IppAlgoMeta* meta);
      int (*Start)();
      int (*Flush)();
      int (*Process)(IppAlgoBuffer* inBuffer[], int inBufferCount, IppAlgoBuffer* outBuffer, IppAlgoMeta* meta);
      int (*Stop)();
  } IppAlgoFunc;

1) Init : 算法插件初始化接口,在起流前被ippnode 调用,其中IppAlgoMeta 定义在ipp_algo.h 中,为ippnode和算法插件提供非图像数据的传递通道,如当前运行的场景,算法处理后输出的人脸坐标等等,可根据实际需求进行扩展。
2) Start:开始接口,起流时被ippnode 调用
3) Flush:刷新数据的接口,停流之前被ippnode 调用。此接口被调用时,算法插件需尽可能快地停止处理。
4) Process: 数据处理接口,每帧数据都通过此接口输入至算法插件进行处理。inBuffer是一组输入buffer,inBufferCount是输入buffer 的个数,outBuffer是输出buffer,meta是算法处理时产生的非图像数据,IppAlgoBuffer在ipp_algo.h中定义
5) Stop:停止处理接口,停流时被ippnode调用

typedef struct IppAlgoBuffer {
      void* addr;
      unsigned int width;
      unsigned int height;
      unsigned int stride;
      unsigned int size;
      int id;
  } IppAlgoBuffer;

其中上边代码中的id指的是和ippnode对应的port口id,比如inBuffer[0]的id为0,则对应的是ippnode 的第0个输入port口。需要注意的是outBuffer可以为空,此时其中一个输入buffer 被ippnode作为输出buffer传递到下个node,inBuffer至少有一个buffer不为空。输入输出buffer 由pipeline配置决定。 比如在普通预览场景无算法处理且只有一路拍照数据传递到ippnode的情况下,输入buffer只有一个,输出buffer为空,即对于算法插件输入buffer 进行了透传; 比如算法插件进行两路预览图像数据进行合并的场景,第一路buffer需要预览送显示。把第二路图像拷贝到第一路的buffer即可,此时输入buffer有两个,输出buffer为空; 比如在算法插件中进行预览数据格式转换的场景,yuv转换为RGBA,那么只有一个yuv格式的输入buffer的情况下无法完成RGBA格式buffer的输出,此时需要一个新的buffer,那么ippnode的输出port口buffer作为outBuffer传递到算法插件。也即输入buffer只有一个,输出buffer也有一个。

ippnode的port口配置请查看3.3小节的config.hcs的说明。

适配V4L2驱动实例

本章节目的是在v4l2框架下适配RK3568开发板。

区分V4L2 platform相关代码并将其放置“drivers/peripheral/camera/hal/adapter/platform/v4l2”目录下,该目录中包含了“device_manager”“driver_adapter”和“pipeline_core”三个目录。其中“driver_adapter”目录中存放着v4l2协议相关代码。可通过它们实现与v4l2底层驱动交互。该目录下“Pipeline_core”目录与“drivers/peripheral/camera/hal/pipeline_core”中代码组合为pipeline框架。v4l2_source_node 和 uvc_node为v4l2专用Node。device_manager目录存放着向北与pipeline向南与v4l2 adapter交互的代码

  drivers/peripheral/camera/hal/adapter/platform/v4l2/src/
  ├── device_manager
  │   ├── enumerator_manager.cpp
  │   ├── flash_controller.cpp
  │   ├── flash_manager.cpp
  │   ├── idevice_manager.cpp
  │   ├── include
  │   ├── isp_controller.cpp
  │   ├── isp_manager.cpp
  │   ├── sensor_controller.cpp
  │   ├── sensor_manager.cpp
  │   └── v4l2_device_manager.cpp
  ├── driver_adapter
  │   ├── BUILD.gn
  │   ├── include
  │   ├── main_test
  │   └── src
  └── pipeline_core
      └── nodes

区分V4L2 chipset相关代码并将其放置在“device/ p r o d u c t c o m p a n y / {product_company}/ productcompany/{device_name} /camera”目录下。

  ├── BUILD.gn
  ├── camera_demo
  │   └── project_camera_demo.h
  ├── include
  │   └── device_manager
  ├── product.gni
  └── src
      ├── device_manager
      ├── driver_adapter
      └── pipeline_core

其中“driver_adapter”目录中包含了关于RK3568 driver adapter的测试用例头文件。Camera_demo目录存放了camera hal 中demo测试用例的chipset相关的头文件。device_manager存放了RK3568适配的camera sensor 读取设备能力的代码 其中,project_hardware.h 比较关键,存放了device_manager支持当前chipset的设备列表。如下:

 namespace OHOS::Camera {
    std::vector<HardwareConfiguration> hardware = {
        {CAMERA_FIRST, DM_M_SENSOR, DM_C_SENSOR, (std::string) "rkisp_v5"},
        {CAMERA_FIRST, DM_M_ISP, DM_C_ISP, (std::string) "isp"},
        {CAMERA_FIRST, DM_M_FLASH, DM_C_FLASH, (std::string) "flash"},
        {CAMERA_SECOND, DM_M_SENSOR, DM_C_SENSOR, (std::string) "Imx600"},
        {CAMERA_SECOND, DM_M_ISP, DM_C_ISP, (std::string) "isp"},
        {CAMERA_SECOND, DM_M_FLASH, DM_C_FLASH, (std::string) "flash"}
   };
  } // namespace OHOS::Camera

修改编译选项来达到根据不同的编译chipset来区分v4l2和其他框架代码编译。增加device/ p r o d u c t c o m p a n y / {product_company}/ productcompany/{device_name}/camera/product.gni

  camera_product_name_path = "//vendor/${product_company}/${product_name}"
  camera_device_name_path = "//device/board/${product_company}/${device_name}"
  is_support_v4l2 = true
  if (is_support_v4l2) {
      is_support_mpi = false
      defines += [ "SUPPORT_V4L2" ]
      chipset_build_deps = "$camera_device_name_path/camera/:chipset_build"
      camera_device_manager_deps =
          "$camera_device_name_path/camera/src/device_manager:camera_device_manager"
      camera_pipeline_core_deps =
          "$camera_device_name_path/camera/src/pipeline_core:camera_pipeline_core"
  }

当“product.gni”被// drivers/peripheral/camera/hal/camera.gni加载,就说明要编译v4l2相关代码。在//drivers/peripheral/camera/hal/camera.gni中根据编译时传入的product_name和device_name名来加载相应的gni文件。

  import("//build/ohos.gni")
  if ("${product_name}" == "ohos-arm64") {
    import(
        "//drivers/peripheral/camera/hal/adapter/chipset/rpi/rpi3/device/camera/product.gni")
  } else if ("${product_name}" == "Hi3516DV300") {
    import(
        "//device/soc/hisilicon/common/hal/media/camera/hi3516dv300/linux_standard/camera/product.gni")

“drivers/peripheral/camera/hal/BUILD.gn”中会根据 chipset_build_deps camera_device_manager_deps 和 camera_pipeline_core_deps来编译不同的chipset

     print("product_name : , ${product_name}")
      group("camera_hal") {
        if (is_standard_system) {
          deps = [
            "$camera_path/../interfaces/hdi_ipc/client:libcamera_client",
            "buffer_manager:camera_buffer_manager",
            "device_manager:camera_device_manager",
            "hdi_impl:camera_hdi_impl",
            "init:ohos_camera_demo",
            "pipeline_core:camera_pipeline_core",
            "utils:camera_utils",
          ]
          deps += [ "${chipset_build_deps}" ]
        }

Camera hal层向下屏蔽了平台及芯片差异,对外(Camera service或者测试程序)提供统一接口,其接口定义在“drivers/peripheral/camera/interfaces/include”目录下:

        ├── icamera_device_callback.h
        ├── icamera_device.h
        ├── icamera_host_callback.h
        ├── icamera_host.h
        ├── ioffline_stream_operator.h
        ├── istream_operator_callback.h
        ├── istream_operator.h

测试时,只需要针对所提供的对外接口进行测试,即可完整测试Camera hal层代码,具体接口说明,可参考“drivers/peripheral/camera/interfaces”目录下的“README_zh.md”和头文件接口定义。具体的调用流程,可参考测试demo:drivers/peripheral/camera/hal/init。

camera适配过程中问题以及解决方案

修改SUBWINDOW_TYPE和送显format

修改RGBA888送显,模式由video 改为 SUBWINDOW_TYPE为normal模式:

由于openharmony 较早实现的是3516平台camera, 该平台采用PIXEL_FMT_YCRCB_420_SP格式送显,而RK3568需将预览流由yuv420转换为PIXEL_FMT_RGBA_8888送上屏幕才可被正确的显示。具体需修改foundation/ace/ace_engine/frameworks/core/components/camera/standard_system/camera.cpp 文件中如下内容,该文件被编译在libace.z.so中

  #ifdef PRODUCT_RK
      previewSurface_->SetUserData(SURFACE_FORMAT, std::to_string(PIXEL_FMT_RGBA_8888));
      previewSurface_->SetUserData(CameraStandard::CameraManager::surfaceFormat,
                                   std::to_string(OHOS_CAMERA_FORMAT_RGBA_8888));
  #else
      previewSurface_->SetUserData(SURFACE_FORMAT, std::to_string(PIXEL_FMT_YCRCB_420_SP));
      previewSurface_->SetUserData(CameraStandard::CameraManager::surfaceFormat,
                                   std::to_string(OHOS_CAMERA_FORMAT_YCRCB_420_SP));
  #endif

foundation/multimedia/camera_standard/services/camera_service/src/hstream_repeat.cpp 文件中如下内容,该文件被编译在libcamera_service.z.so中

void HStreamRepeat::SetStreamInfo(std::shared_ptr<Camera::StreamInfo> streamInfo)
    {
        int32_t pixelFormat;
        auto it = g_cameraToPixelFormat.find(format_);
        if (it != g_cameraToPixelFormat.end()) {
            pixelFormat = it->second;
        } else {
    #ifdef RK_CAMERA
            pixelFormat = PIXEL_FMT_RGBA_8888;
    #else
            pixelFormat = PIXEL_FMT_YCRCB_420_SP;
    #endif

如上3516平台是使用VO通过VO模块驱动直接送显,所以在ace中配置的subwindows模式为SUBWINDOW_TYPE_VIDEO. 需在foundation/ace/ace_engine/frameworks/core/components/camera/standard_system/camera.cpp文件中做如下修改,该文件被编译在libace.z.so中

  #ifdef PRODUCT_RK
      option->SetWindowType(SUBWINDOW_TYPE_NORMAL);
  #else
      option->SetWindowType(SUBWINDOW_TYPE_VIDEO);
  #endif

增加rk_codec_node

在该node中完成rgb转换,jpeg和h264压缩编解码前文讲过camera hal的pipeline模型的每一个node都是camera数据轮转过程中的一个节点,由于当前camera hal v4l2 adapter只支持一路流进行数据轮转,那么拍照和录像流就必须从单一的预览流中拷贝。现阶段openharmony也没有专门的服务端去做codec和rgb转换jpeg压缩的工作。那么只能在camera hal中开辟一个专有node去做这些事情,也就是rk_codec_node。 Hcs中增加rk_codec_node连接模型: 修改vendor/hihope/rk3568/hdf_config/uhdf/camera/pipeline_core/config.hcs文件

          normal_preview_snapshot :: pipeline_spec {
                name = "normal_preview_snapshot";
                v4l2_source :: node_spec {
                    name = "v4l2_source#0";
                    status = "new";
                    out_port_0 :: port_spec {
                        name = "out0";
                        peer_port_name = "in0";
                        peer_port_node_name = "fork#0";
                        direction = 1;
                    }
                }
                fork :: node_spec {
                    name = "fork#0";
                    status = "new";
                    in_port_0 :: port_spec {
                        name = "in0";
                        peer_port_name = "out0";
                        peer_port_node_name = "v4l2_source#0";
                        direction = 0;
                    }
                    out_port_0 :: port_spec {
                        name = "out0";
                        peer_port_name = "in0";
                        peer_port_node_name = "RKCodec#0";
                        direction = 1;
                    }
                    out_port_1 :: port_spec {
                        name = "out1";
                        peer_port_name = "in0";
                        peer_port_node_name = "RKCodec#1";
                        direction = 1;
                    }
                }
                RKCodec_1 :: node_spec {
                    name = "RKCodec#0";
                    status = "new";
                    in_port_0 :: port_spec {
                        name = "in0";
                        peer_port_name = "out0";
                        peer_port_node_name = "fork#0";
                        direction = 0;
                    }
                    out_port_0 :: port_spec {
                        name = "out0";
                        peer_port_name = "in0";
                        peer_port_node_name = "sink#0";
                        direction = 1;
                    }
                }
                RKCodec_2 :: node_spec {
                    name = "RKCodec#1";

以预览加拍照双路流为列,v4l2_source_node为数据源,流向了fork_node,rork_node将预览数据直接送给RKCodec node, 将拍照数据流拷贝一份也送给RKCodec node进行转换。转换完成的数据将送给sink node后交至buffer的消费端。

device/board/hihope/rk3568/camera/src/pipeline_core/BUILD.gn中添加rk_codec_node.cpp和相关依赖库的编译。其中librga为yuv到rgb格式转换库,libmpp为yuv到H264编解码库,libjpeg为yuv到jpeg照片的压缩库。

    ohos_shared_library("camera_pipeline_core") {
        sources = [
          "$camera_device_name_path/camera/src/pipeline_core/node/rk_codec_node.cpp",
          "$camera_path/adapter/platform/v4l2/src/pipeline_core/nodes/uvc_node/uvc_node.cpp",
                  "$camera_path/adapter/platform/v4l2/src/pipeline_core/nodes/v4l2_source_node/v4l2_source_node.cpp",
           deps = [
            "$camera_path/buffer_manager:camera_buffer_manager",
            "$camera_path/device_manager:camera_device_manager",
            "//device/soc/rockchip/hardware/mpp:libmpp",
            "//device/soc/rockchip/hardware/rga:librga",
            "//foundation/multimedia/camera_standard/frameworks/native/metadata:metadata",
            "//third_party/libjpeg:libjpeg_static",

openharmony/device/board/hihope/rk3568/camera/src/pipeline_core/node/rk_codec_node.cpp主要接口:

   void RKCodecNode::DeliverBuffer(std::shared_ptr<IBuffer>& buffer)
    {
        if (buffer == nullptr) {
            CAMERA_LOGE("RKCodecNode::DeliverBuffer frameSpec is null");
            return;
        }
    
        int32_t id = buffer->GetStreamId();
        CAMERA_LOGE("RKCodecNode::DeliverBuffer StreamId %{public}d", id);
        if (buffer->GetEncodeType() == ENCODE_TYPE_JPEG) {
            Yuv420ToJpeg(buffer);
        } else if (buffer->GetEncodeType() == ENCODE_TYPE_H264) {
            Yuv420ToH264(buffer);
        } else {
            Yuv420ToRGBA8888(buffer);
        }

由fork_node出来的数据流将会被deliver到rk_codec_node的DeliverBuffer接口中,该接口会根据不同的EncodeType去做不同的转换处理。经过转换过的buffers再deliver到下一级node中处理。直到deliver到buffer消费者手中。

H264帧时间戳和音频时间戳不同步问题。

问题点:Ace在CreateRecorder时会同时获取音频和视频数据并将他们合成为.mp4文件。但在实际合成过程当中需要检查音视频信息中的时间戳是否一致,如不一致将会Recorder失败。表现出的现象是camera app点击录像按钮后无法正常停止,强行停止后发现mp4文件为空。

解决方法:首先需找到audio模块对于音频时间戳的获取方式。

   int32_t AudioCaptureAsImpl::GetSegmentInfo(uint64_t &start)
    {
        CHECK_AND_RETURN_RET(audioCapturer_ != nullptr, MSERR_INVALID_OPERATION);
        AudioStandard::Timestamp timeStamp;
        auto timestampBase = AudioStandard::Timestamp::Timestampbase::MONOTONIC;
        CHECK_AND_RETURN_RET(audioCapturer_->GetAudioTime(timeStamp, timestampBase), MSERR_UNKNOWN);
        CHECK_AND_RETURN_RET(timeStamp.time.tv_nsec >= 0 && timeStamp.time.tv_sec >= 0, MSERR_UNKNOWN);
        if (((UINT64_MAX - timeStamp.time.tv_nsec) / SEC_TO_NANOSECOND) <= static_cast<uint64_t>(timeStamp.time.tv_sec)) {
            MEDIA_LOGW("audio frame pts too long, this shouldn't happen");
        }
        start = timeStamp.time.tv_nsec + timeStamp.time.tv_sec * SEC_TO_NANOSECOND;
        MEDIA_LOGI("timestamp from audioCapturer: %{public}" PRIu64 "", start);
        return MSERR_OK;
    }

可以看到,audio_capture_as_impl.cpp 文件中。audio模块用的是CLOCK_MONOTONIC,即系统启动时开始计时的相对时间。而camera 模块使用的是CLOCK_REALTIME,即系统实时时间。

            mppStatus_ = 1;
            buf_size = ((MpiEncTestData *)halCtx_)->frame_size;
    
            ret = hal_mpp_encode(halCtx_, dma_fd, (unsigned char *)buffer->GetVirAddress(), &buf_size);
            SearchIFps((unsigned char *)buffer->GetVirAddress(), buf_size, buffer);
    
            buffer->SetEsFrameSize(buf_size);
            clock_gettime(CLOCK_MONOTONIC, &ts);
            timestamp = ts.tv_nsec + ts.tv_sec * TIME_CONVERSION_NS_S;
            buffer->SetEsTimestamp(timestamp);
            CAMERA_LOGI("RKCodecNode::Yuv420ToH264 video capture on\n");

解决方法:修改camera hal中rk_codec_node.cpp中的获取时间类型为CLOCK_MONOTONIC即可解决问题。

time_t改为64位以后匹配4.19 kernel问题。

背景介绍:RK3568在遇到这个问题时的环境是上层运行的32位系统,底层是linux4.19 64位kernel。在32位系统环境下time_t这个typedef是long类型的,也就是32位。但在下面这个提交中将time_t 改成_Int64位。这样就会导致camera v4l2在ioctl时发生错误。

  TYPEDEF _Int64 time_t;
  TYPEDEF _Int64 suseconds_t;    

具体错误以及临时修改方案:

1,发生错误时在hilog中搜索camera_host 会发现在V4L2AllocBuffer接口中下发VIDIOC_QUERYBUF的CMD时上报了一个Not a tty的错误。如下:

V4L2AllocBuffer error:ioctl VIDIOC_QUERYBUF failed: Not a tty

RetCode HosV4L2Buffers::V4L2AllocBuffer(int fd, const std::shared_ptr<FrameSpec>& frameSpec)
{
    struct v4l2_buffer buf = {};
    struct v4l2_plane planes[1] = {};
    CAMERA_LOGD("V4L2AllocBuffer\n");

    if (frameSpec == nullptr) {
        CAMERA_LOGE("V4L2AllocBuffer frameSpec is NULL\n");
        return RC_ERROR;
    }

    switch (memoryType_) {
        case V4L2_MEMORY_MMAP:
            // to do something
            break;
        case V4L2_MEMORY_USERPTR:
            buf.type = bufferType_;
            buf.memory = memoryType_;
            buf.index = (uint32_t)frameSpec->buffer_->GetIndex();

            if (bufferType_ == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE) {
                buf.m.planes = planes;
                buf.length = 1;
            }
            CAMERA_LOGD("V4L2_MEMORY_USERPTR Print the cnt: %{public}d\n", buf.index);

            if (ioctl(fd, VIDIOC_QUERYBUF, &buf) < 0) {
                CAMERA_LOGE("error: ioctl VIDIOC_QUERYBUF failed: %{public}s\n", strerror(errno));
                return RC_ERROR;

2,我们知道,一般ioctl系统调用的CMD都是以第三个参数的sizeof为CMD值主要组成传递进内核去寻找内核中相对应的switch case. 如下图,v4l2_buffer为VIDIOC_QUERYBUF宏的值得主要组成部分,那么v4l2_buffer的size发生变化,VIDIOC_QUERYBUF的值也会发生变化。

  #define VIDIOC_S_FMT        _IOWR('V',  5, struct v4l2_format)
  #define VIDIOC_REQBUFS      _IOWR('V',  8, struct v4l2_requestbuffers)
  #define VIDIOC_QUERYBUF     _IOWR('V',  9, struct v4l2_buffer)
  #define VIDIOC_G_FBUF        _IOR('V', 10, struct v4l2_framebuffer)

3,当kernel 打开CONFIG_COMPAT这个宏时,可以实现32位系统到64位kernel的兼容,对于32位系统下发的ioctl会先进入下面截图中的接口里去做cmd值由32到64位的转换。

  long v4l2_compat_ioctl32(struct file *file, unsigned int cmd, unsigned long arg)
  {
      struct video_device *vdev = video_devdata(file);
      long ret = -ENOIOCTLCMD;
  
      if (!file->f_op->unlocked_ioctl)
          return ret;
  
      if (_IOC_TYPE(cmd) == 'V' && _IOC_NR(cmd) < BASE_VIDIOC_PRIVATE)
          ret = do_video_ioctl(file, cmd, arg);
      else if (vdev->fops->compat_ioctl32)
          ret = vdev->fops->compat_ioctl32(file, cmd, arg);

4.那么在kernel中会定义一个kernel认为的VIDIOC_QUERYBUF的值。

    #define VIDIOC_S_FMT32      _IOWR('V',  5, struct v4l2_format32)
    #define VIDIOC_QUERYBUF32   _IOWR('V',  9, struct v4l2_buffer32)
    #define VIDIOC_QUERYBUF32_TIME32 _IOWR('V',  9, struct v4l2_buffer32_time32)

5,前文提到过,上层musl中time_t已经由32位被改为64位,v4l2_buffer结构体中的struct timeval中就用到了time_t。那么应用层的v4l2_buffer的大小就会跟kernel层的不一致,因为kernel的struct timeval 中编译时使用的是kernel自己在time.h中定义的 kernel_time_t。这就导致应用和驱动层对于v4l2_buffer的sizeof计算不一致从而调用到内核态后找不到cmd的错误。

   struct v4l2_buffer {
            __u32           index;
             __u32           type;
            __u32           bytesused;
            __u32           flags;
            __u32           field;
            struct timeval      timestamp;
            struct v4l2_timecode    timecode;
            __u32           sequence;

6,临时解决方案是修改videodev2.h中的struct timeval为自己临时定义的结构体, 保证上下层size一致。如下:

            struct timeval1 {
                long tv_sec;
                long tv_usec;
            }
            struct v4l2_buffer {
                __u32           index;
                __u32           type;
                __u32           bytesused;
                __u32           flags;
                __u32           field;
                struct timeval1      timestamp;
                struct v4l2_timecode    timecode;

根本解决方案:

如需要根本解决这个问题,只有两种方法。第一将系统升级为64位系统,保证用户态和内核态对于time_t变量的size保持一致。第二,升级5.10之后版本的kernel 因为5.10版本的kernel在videodev2.h文件中解决了这个情况。目前我们已在5.10的kernel上验证成功,如下图,可以看到在编译kernel时考虑到了64位time_t的问题。

struct v4l2_buffer {
            __u32           index;
            __u32           type;
            __u32           bytesused;
            __u32           flags;
            __u32           field;
        #ifdef __KERNEL__
            struct __kernel_v4l2_timeval timestamp;
        #else
            struct timeval      timestamp;
        #endif
            struct v4l2_timecode    timecode;
 }

 struct __kernel_v4l2_timeval {
      long long   ._sec;
  #if defined(__sparc__) && defined(__arch64__)
      int     tv_usec;
      int     __pad;
  #else
      long long   tv_usec;
  #endif
  };

H264 关键帧获取上报

H264除了需要上报经过编解码的数据外,还需上报关键帧信息。即这一帧是否为关键帧?mp4编码时需要用到这些信息,那么怎么分析那一帧是关键帧那?主要是分析NALU头信息。Nalu type & 0x1f就代表该帧的类型。Nalu头是以0x00000001或0x000001为起始标志的。 该图为nal_unit_type为不同数值时的帧类型。我们主要关心type为5也就是IDR帧信息。

rk_cedec_node.cpp文件里对IDR帧分析进行了代码化:

    static constexpr uint32_t nalBit = 0x1F;
    #define NAL_TYPE(value)             ((value) & nalBit)
    void RKCodecNode::SearchIFps(unsigned char* buf, size_t bufSize, std::shared_ptr<IBuffer>& buffer)
    {
        size_t nalType = 0;
        size_t idx = 0;
        size_t size = bufSize;
        constexpr uint32_t nalTypeValue = 0x05;
    
        if (buffer == nullptr || buf == nullptr) {
            CAMERA_LOGI("RKCodecNode::SearchIFps parameter == nullptr");
            return;
        }
    
        for (int i = 0; i < bufSize; i++) {
            int ret = findStartCode(buf + idx, size);
            if (ret == -1) {
                idx += 1;
                size -= 1;
            } else {
                nalType = NAL_TYPE(buf[idx + ret]);
                CAMERA_LOGI("ForkNode::ForkBuffers nalu == 0x%{public}x buf == 0x%{public}x \n", nalType, buf[idx + ret]);

每经过一个h264转换过的buffer都会被传入SearchIFps接口中寻找IDR帧。其中findStartCode()接口会对buffer中的内容逐个字节扫描,知道寻找出NALU头来

   int RKCodecNode::findStartCode(unsigned char *data, size_t dataSz)
      {
          constexpr uint32_t dataSize = 4;
          constexpr uint32_t dataBit2 = 2;
          constexpr uint32_t dataBit3 = 3;
      
          if (data == nullptr) {
              CAMERA_LOGI("RKCodecNode::findStartCode parameter == nullptr");
              return -1;
          }
      
          if ((dataSz > dataSize) && (data[0] == 0) && (data[1] == 0) && \
              (data[dataBit2] == 0) && (data[dataBit3] == 1)) {
              return 4; // 4:start node
          }
      
          return -1;
      }

当找到NALU头后就会对&0x1F 找出nal_unit_type,如果type为5标记关键帧信息并通过buffer->SetEsKeyFrame(1);接口上报。

粉丝反馈

经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?

为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。

在这里插入图片描述

《鸿蒙 (Harmony OS)开发学习手册》(共计892页):https://gitcode.com/HarmonyOS_MN/733GH/overview

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

鸿蒙开发面试真题(含参考答案):

在这里插入图片描述

《OpenHarmony源码解析》:

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……
  • 系统架构分析
  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

图片

OpenHarmony 设备开发学习手册:https://gitcode.com/HarmonyOS_MN/733GH/overview

图片
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2196821.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决AWS Organizatiion邀请多个Linker账号数量限额问题

文章目录 情景再现什么是 AWS Organizations&#xff1f;操作步骤完整支持工单截图参考链接 情景再现 冷知识&#xff1a;默认情况下&#xff0c;一个组织中允许的原定设置最大账户数为10个。新创建的账户和组织的限额可能会低于默认的 10 个账户。 现在需要用一个AWS账号&…

小红书推广的7个数字营销策略分享-华媒舍

数字营销在如今的商业环境中变得越来越重要。在众多数字营销策略中&#xff0c;小红书已经成为了一种受欢迎的推广平台。本文将介绍小红书推广的七个数字营销策略&#xff0c;重点聚焦于第四个策略&#xff0c;该策略能够帮助你超额完成销售目标。 数字营销策略一&#xff1a;明…

JAVA:Fastjson 序列化和反序列化的技术指南

请关注微信公众号&#xff1a;拾荒的小海螺 博客地址&#xff1a;http://lsk-ww.cn/ 1、简述 在 Java 领域&#xff0c;JSON 作为轻量级数据交换格式广泛使用。对于高性能、高并发场景&#xff0c;选择一个高效的 JSON 序列化和反序列化库非常重要。Fastjson 是由阿里巴巴开发…

成长之路:我的技术布道之路回顾

成长之路&#xff1a;从零开始的技术布道之路回顾-哔哩哔哩 大家好&#xff0c;我是许泽宇&#xff0c;今天想跟大家分享一下我在过去一年的成长和收获。这一年对我来说是满满的一年&#xff0c;我在技术布道的道路上取得了一些小小的成绩&#xff0c;也收获了很多宝贵的经验。…

精选四款免费电脑录屏软件,轻松搞定屏幕录制

大家好&#xff0c;我是一个喜欢找各种办公软件的人&#xff0c;今天我要来聊聊咱们日常工作中一个超实用的小工具——电脑录屏软件。作为一个天天和电脑打交道的办公室文员&#xff0c;我算是尝遍了市面上几款热门的录屏神器&#xff0c;它们各有各的绝活&#xff0c;让我在工…

unix系统中的system函数

一、前言 本文将介绍unix系统中的system函数&#xff0c;包括system函数的作用以及使用方法。 二、system函数 简单来说&#xff0c;system函数用于创建一个子进程并让子进程运行新的程序。其原理是依次执行如下操作&#xff1a; fork() --> execl() --> waitpid() 函…

在QT中将Widget提升为自定义的Widget后,无法设置Widget的背景颜色问题解决方法

一、问题 在Qt中将QWidget组件提升为自定义的QWidget后&#xff0c;Widget设置的样式失效&#xff0c;例如设置背景颜色为白色失效。 二、解决方法 将已经提升的QWidget实例对象&#xff0c;脱离父窗体的样式&#xff0c;然后再重新设置自己的样式。

AP8505固定5V输出5V0.2A,SOP7/DIP7非隔离开关电源IC

AP8505基于高压同步整流架构&#xff0c;集成PFM控制器以及500V高可靠性MOSFET&#xff0c;用于外部元器件极精简的小功率非隔离开关电源。AP8505无线门铃芯片内置500V高压启动&#xff0c;实现系统快速启动、超低待机功能。5V非隔离无线门铃芯片AP8505提供了完整的智能化保护功…

基于Python的爬虫设计与数据分析—计算机毕业设计源码37836

目 录 摘要 1 绪论 1.1课题背景 1.2研究目的及意义 1.3爬虫技术 1.4django框架介绍 2 1.5论文结构与章节安排 3 2 基于Python的爬虫设计与数据分析分析 4 2.1 可行性分析 4 2.2 系统流程分析 4 2.2.1数据流程 5 2.2.2业务流程 5 2.3 系统功能分析 5 2.3.1 功能性分析 6 2…

线性代数入门:打开数学的另一扇门

线性代数入门&#xff1a;打开数学的另一扇门 线性代数&#xff0c;作为数学的一个重要分支&#xff0c;它不仅是许多科学和工程领域的核心工具&#xff0c;也是理解现代科技的关键。这篇文章将带你走进线性代数的世界&#xff0c;为你揭开这门学科的神秘面纱。 什么是线性代…

【RAG论文精读1】RAG原始论文-针对知识密集型NLP任务的检索增强生成

目录 一、简介一句话简介作者、引用数、时间论文地址开源代码地址 二、摘要三、引言四、整体架构&#xff08;用一个例子来阐明&#xff09;场景例子&#xff1a;核心点&#xff1a; 五、方法 &#xff08;架构各部分详解&#xff09;5.1 模型1. RAG-Sequence Model2. RAG-Toke…

【面试官】谈谈你对顺序栈和链式栈的认识

思维导图 栈&#xff08;Stack&#xff09;是一种数据结构&#xff0c;遵循后进先出&#xff08;LIFO&#xff09;原则。在java中Stack在java.util.Stack中。 一.常用方法的使用 1. push(E item)&#xff1a;把元素压入栈顶。 代码示例&#xff1a; import java.util.Stack;…

信息学奥赛复赛复习14-CSP-J2021-03网络连接-字符串处理、数据类型溢出、数据结构Map、find函数、substr函数

PDF文档回复:20241007 1 P7911 [CSP-J 2021] 网络连接 [题目描述] TCP/IP 协议是网络通信领域的一项重要协议。今天你的任务&#xff0c;就是尝试利用这个协议&#xff0c;还原一个简化后的网络连接场景。 在本问题中&#xff0c;计算机分为两大类&#xff1a;服务机&#x…

【AI知识点】反向传播(Backpropagation)

反向传播&#xff08;Backpropagation&#xff09; 是训练神经网络的核心算法&#xff0c;它通过反向逐层计算损失函数对每个权重的梯度&#xff0c;来反向逐层更新网络的权重&#xff0c;从而最小化损失函数。 一、反向传播的基本概念 1. 前向传播&#xff08;Forward Propag…

安装DNS

在 CentOS 7 上安装并配置 BIND 以实现 DNS 的正向和反向解析可以按照以下步骤进行&#xff1a; 安装 BIND 打开终端并运行以下命令来安装 BIND 及其工具&#xff1a; yum install bind bind-utils -y配置 BIND 编辑主配置文件&#xff1a; 使用文本编辑器打开 BIND 的主配…

双十一购物清单:这五款爆款科技好物绝不能错过!买到就是赚到!

随着一年一度的双十一购物狂欢节即将拉开帷幕&#xff0c;各大电商平台纷纷推出了一系列优惠活动&#xff0c;吸引着无数消费者的目光。对于科技爱好者而言&#xff0c;这无疑是一个绝佳的机会&#xff0c;能够以优惠的价格购得心仪的电子产品和智能设备。然而&#xff0c;在琳…

HTTPS介绍 --- 超详细保姆级知识讲解

目录 一. 认识HTTPS 二. 使用HTTPS加密的重要性 三. HTTPS的工作流程 四. 常见的加密方式 4.1 对称加密 4.2 非对称加密 五. 数据摘要 && 数据指纹 5.1 数据摘要 5.2 数据签名 六. HTTPS加密过程探究 6.1 方案一&#xff1a;只使用对…

晶体规格书及匹配测试

一、晶体参数介绍 晶体的电气规格相对比较简单,如下: 我们逐一看看每个参数, FL就是晶体的振动频率,这个晶体是24.576MHz的。 CL就是负载电容,决定了晶体频率是否准确,包括外接的实际电容、芯片的等效电容以及PCB走线的寄生电容等,核心参数。 Frequency Tolerance是…

骨传导耳机哪个牌子好?五大精选抢手骨传导耳机分享!

在数字化时代背景下&#xff0c;音乐和音频内容已经成为人们日常生活不可或缺的一部分。随着技术的发展&#xff0c;骨传导耳机凭借其独特的传输方式和健康优势&#xff0c;迅速赢得了市场和消费者的青睐。不同于传统耳机通过空气传导声音&#xff0c;骨传导耳机通过骨骼直接传…

《独自骑行与群骑之旅:探索不同的自由与氛围》

在快节奏的现代生活中&#xff0c;骑行作为一种既环保又健康的出行方式&#xff0c;越来越受到人们的青睐。然而&#xff0c;选择一个人骑车还是加入一群人的行列&#xff0c;这不仅仅是一种出行方式的选择&#xff0c;更是一种生活态度和价值观的体现。本文将探讨这两种骑行方…