【黑马点评】5 Redisson分布式锁

news2025/1/11 2:37:03

【黑马点评】5 Redisson分布式锁

  • 5 分布式锁-redisson
    • 5.1 分布式锁-redission功能介绍
    • 5.2 分布式锁-Redission快速入门
    • 5.3 分布式锁-redission可重入锁原理
    • 5.4 分布式锁-redission锁重试和WatchDog机制
    • 5.5 分布式锁-redission锁的MutiLock原理
    • 5.6 总结

黑马点评跟做笔记之 5 Redisson分布式锁

5 分布式锁-redisson

5.1 分布式锁-redission功能介绍

基于setnx实现的分布式锁存在下面的问题:

重入问题:重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中,可重入锁的意义在于防止死锁,比如HashTable这样的代码中,他的方法都是使用synchronized修饰的,假如他在一个方法内,调用另一个方法,那么此时如果是不可重入的,不就死锁了吗?所以可重入锁他的主要意义是防止死锁,我们的synchronized和Lock锁都是可重入的。

不可重试:是指目前的分布式只能尝试一次,我们认为合理的情况是:当线程在获得锁失败后,他应该能再次尝试获得锁。

**超时释放:**我们在加锁时增加了过期时间,这样的我们可以防止死锁,但是如果卡顿的时间超长,虽然我们采用了lua表达式防止删锁的时候,误删别人的锁,但是毕竟没有锁住,有安全隐患

主从一致性: 如果Redis提供了主从集群,当我们向集群写数据时,主机需要异步的将数据同步给从机,而万一在同步过去之前,主机宕机了,就会出现死锁问题。
在这里插入图片描述

那么什么是Redission呢

Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。

Redission提供了分布式锁的多种多样的功能

在这里插入图片描述

5.2 分布式锁-Redission快速入门

pom.xml中添加

<dependency>
	<groupId>org.redisson</groupId>
	<artifactId>redisson</artifactId>
	<version>3.13.6</version>
</dependency>

Config下新建RedissonConfig文件,配置Redisson客户端

package com.hmdp.config;

import org.redisson.Redisson;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class RedissonConfig {

    @Bean
    public RedissonClient redissonClient(){
        // 配置
        Config config = new Config();
        config.useSingleServer().setAddress("redis://127.0.0.1:6379") //redis://192.168.150.101:6379
                .setPassword("123456");
        // 创建RedissonClient对象
        return Redisson.create(config);
    }
}

5.3 分布式锁-redission可重入锁原理

在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,也是重入一次就加一,释放一次就-1 ,直到减少成0 时,表示当前这把锁没有被人持有。

在redission中,我们的也支持支持可重入锁

在分布式锁中,他采用hash结构用来存储锁,其中大key表示表示这把锁是否存在,用小key表示当前这把锁被哪个线程持有,所以接下来我们一起分析一下当前的这个lua表达式

这个地方一共有3个参数

KEYS[1] : 锁名称

ARGV[1]: 锁失效时间

ARGV[2]: id + “:” + threadId; 锁的小key

exists: 判断数据是否存在 name:是lock是否存在,如果==0,就表示当前这把锁不存在

redis.call(‘hset’, KEYS[1], ARGV[2], 1);此时他就开始往redis里边去写数据 ,写成一个hash结构

Lock{

​ id + “:” + threadId : 1

}

如果当前这把锁存在,则第一个条件不满足,再判断

redis.call(‘hexists’, KEYS[1], ARGV[2]) == 1

此时需要通过大key+小key判断当前这把锁是否是属于自己的,如果是自己的,则进行

redis.call(‘hincrby’, KEYS[1], ARGV[2], 1)

将当前这个锁的value进行+1 ,redis.call(‘pexpire’, KEYS[1], ARGV[1]); 然后再对其设置过期时间,如果以上两个条件都不满足,则表示当前这把锁抢锁失败,最后返回pttl,即为当前这把锁的失效时间 .(pttl命令会返回key的剩余有效时间)

如果小伙帮们看了前边的源码, 你会发现他会去判断当前这个方法的返回值是否为null,如果是null,则对应则前两个if对应的条件,说明获取锁成功,退出抢锁逻辑,如果返回的不是null,即走了第三个分支,在源码处会进行while(true)的自旋抢锁。

"if (redis.call('exists', KEYS[1]) == 0) then " +
                  "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                  "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "return redis.call('pttl', KEYS[1]);" 

在这里插入图片描述

5.4 分布式锁-redission锁重试和WatchDog机制

说明:由于课程中已经说明了有关tryLock的源码解析以及其看门狗原理,所以笔者在这里给大家分析lock()方法的源码解析,希望大家在学习过程中,能够掌握更多的知识

抢锁过程中,获得当前线程,通过tryAcquire进行抢锁,该抢锁逻辑和之前逻辑相同

1、先判断当前这把锁是否存在,如果不存在,插入一把锁,返回null

2、判断当前这把锁是否是属于当前线程,如果是,则返回null

所以如果返回是null,则代表着当前这哥们已经抢锁完毕,或者可重入完毕,但是如果以上两个条件都不满足,则进入到第三个条件,返回的是锁的失效时间,同学们可以自行往下翻一点点,你能发现有个while( true) 再次进行tryAcquire进行抢锁

long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
    return;
}

接下来会有一个条件分支,因为lock方法有重载方法,一个是带参数,一个是不带参数,如果带带参数传入的值是-1,如果传入参数,则leaseTime是他本身,所以如果传入了参数,此时leaseTime != -1 则会进去抢锁,抢锁的逻辑就是之前说的那三个逻辑

if (leaseTime != -1) {
    return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}

如果是没有传入时间,则此时也会进行抢锁, 而且抢锁时间是默认看门狗时间 commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()

ttlRemainingFuture.onComplete((ttlRemaining, e) 这句话相当于对以上抢锁进行了监听,也就是说当上边抢锁完毕后,此方法会被调用,具体调用的逻辑就是去后台开启一个线程,进行续约逻辑,也就是看门狗线程

RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,
                                        commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),
                                        TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
    if (e != null) {
        return;
    }

    // lock acquired
    if (ttlRemaining == null) {
        scheduleExpirationRenewal(threadId);
    }
});
return ttlRemainingFuture;

此逻辑就是续约逻辑,注意看commandExecutor.getConnectionManager().newTimeout() 此方法

Method( new TimerTask() {},参数2 ,参数3 )

指的是:通过参数2,参数3 去描述什么时候去做参数1的事情,现在的情况是:10s之后去做参数一的事情

因为锁的失效时间是30s,当10s之后,此时这个timeTask 就触发了,他就去进行续约,把当前这把锁续约成30s,如果操作成功,那么此时就会递归调用自己,再重新设置一个timeTask(),于是再过10s后又再设置一个timerTask,完成不停的续约

那么大家可以想一想,假设我们的线程出现了宕机他还会续约吗?当然不会,因为没有人再去调用renewExpiration这个方法,所以等到时间之后自然就释放了。

private void renewExpiration() {
    ExpirationEntry ee = EXPIRATION_RENEWAL_MAP.get(getEntryName());
    if (ee == null) {
        return;
    }
    
    Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
        @Override
        public void run(Timeout timeout) throws Exception {
            ExpirationEntry ent = EXPIRATION_RENEWAL_MAP.get(getEntryName());
            if (ent == null) {
                return;
            }
            Long threadId = ent.getFirstThreadId();
            if (threadId == null) {
                return;
            }
            
            RFuture<Boolean> future = renewExpirationAsync(threadId);
            future.onComplete((res, e) -> {
                if (e != null) {
                    log.error("Can't update lock " + getName() + " expiration", e);
                    return;
                }
                
                if (res) {
                    // reschedule itself
                    renewExpiration();
                }
            });
        }
    }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);
    
    ee.setTimeout(task);
}

在这里插入图片描述

Redisson分布式锁原理:

可重入:利用hash结构记录线程id和重入次数

可重试:利用信号量和PubSub功能实现等待、唤醒,获取锁失败的重试机制

超时续约:利用watchDog,每隔一段时间(releaseTime / 3),重置超时时间

5.5 分布式锁-redission锁的MutiLock原理

为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例

通常主节点处理写操作,从节点处理读操作。
因此需要主从同步。

此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。

在这里插入图片描述

为了解决这个问题,redission提出来了MutiLock锁,使用这把锁咱们就不使用主从了,每个节点的地位都是一样的, 这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。

在这里插入图片描述

那么MutiLock 加锁原理是什么呢?笔者画了一幅图来说明

当我们去设置了多个锁时,redission会将多个锁添加到一个集合中,然后用while循环去不停去尝试拿锁,但是会有一个总共的加锁时间,这个时间是用需要加锁的个数 * 1500ms ,假设有3个锁,那么时间就是4500ms,假设在这4500ms内,所有的锁都加锁成功, 那么此时才算是加锁成功,如果在4500ms有线程加锁失败,则会再次去进行重试.

连锁,主从节点时,当主机宕机,Redis选取一个从节点作为主节点,但是当前的从节点并没有锁的信息,因此锁失效。
这里,将多个锁都作为主节点。只有所有的锁都加锁成功才算成功。假如此时有一个主节点

5.6 总结

1)不可重入Redis分布式锁:

​ 原理:利用setnx的互斥性;利用ex避免死锁;释放锁时判断线程标示

​ 缺陷:不可重入、无法重试、锁超时失效

2)可重入的Redis分布式锁

​ 原理:利用hash结构,记录线程标示和重入次数;利用watchDog延续锁时间;利用信号量控制锁重试等待

​ 缺陷:redis宕机引起锁失效问题

3)Redisson的multiLock

​ 原理:多个(≥3)独立的Redis节点,必须在所有节点都获取重入锁,才算获取锁成功

​ 缺陷:运维成本高、实现复杂

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2196199.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何使用ssm实现学生工作管理系统

TOC ssm794学生工作管理系统jsp 绪论 1.1 研究背景 当前社会各行业领域竞争压力非常大&#xff0c;随着当前时代的信息化&#xff0c;科学化发展&#xff0c;让社会各行业领域都争相使用新的信息技术&#xff0c;对行业内的各种相关数据进行科学化&#xff0c;规范化管理。…

Java爬虫技术:解锁1688商品搜索的新维度

Java爬虫技术简介 Java爬虫技术是指使用Java语言编写的程序&#xff0c;模拟浏览器行为&#xff0c;自动化地从互联网上获取信息。随着技术的发展&#xff0c;Java爬虫技术已经非常成熟&#xff0c;有多种框架和库可以使用&#xff0c;如Jsoup、HttpClient、WebMagic等。 1688…

LSTM-Transformer时间序列预测(单输入单预测)——基于Pytorch框架

1 介绍 在本篇文章中&#xff0c;将介绍如何使用Transformer和LSTM模型进行时间序列预测。这两种模型分别擅长处理序列数据和捕捉时间序列中的长短期依赖关系。我们将结合这两种模型的优势&#xff0c;构建一个强大的预测模型。单输入单输出预测&#xff0c;适合风电预测&…

与C++类和对象的宿命(下)

本文 1.取地址运算符重载const成员函数取地址成员函数的重载 2. 再探构造函数3. 类型转换1. 隐式类型转换注意事项&#xff1a; 2. 显式类型转换2.1 static_cast2.2 dynamic_cast2.3 const_cast2.4 reinterpret_cast 3. C风格类型转换4. 类型转换操作符5. 注意事项6. 总结 4.st…

MySQL 绪论

数据库相关概念 数据库&#xff08;DB&#xff09;&#xff1a;存储数据的仓库数据库管理系统&#xff08;DBMS&#xff09;&#xff1a;操纵和管理数据库的大型软件SQL&#xff1a;操纵关系型数据库的编程语言&#xff0c;定义了一套操作关系型数据库的统一标准主流的关系型数…

域渗透之: 域渗透环境搭建详解基于VMware

域控环境介绍 在域架构中&#xff0c;最核心的就是域控主机&#xff0c;域控主机分为三种: 普通域控额外域控只读域控 域控环境相关知识点介绍 创建域环境首先就是要创建域控主机。域控主机创建完成以后&#xff0c;需要把所有的计算机拉入域中&#xff0c;这样就形成了域控…

权威认证:中国信通院表彰上海斯歌信创成就!

颁奖现场&#xff1a;左二为上海斯歌业务副总裁陈娅香 2024年9月24日-25日&#xff0c;由中国通信标准化协会主办、中国信息通信研究院&#xff08;简称“中国信通院”&#xff09;承办、中国通信企业协会支持的“2024数字化转型发展大会”在北京召开。本届大会以“拥抱数智化无…

Network - Telnet协议

Telnet 是一种网络协议&#xff0c;允许用户使用基于文本的界面通过网络与远程设备通信。它在早期的网络应用中被广泛用于远程管理和故障诊断&#xff0c;使用户能够连接到远程机器和服务&#xff0c;通常是通过 TCP/IP 网络。 Telnet is a network protocol that allows a use…

Python使用nuitka进行打包简易教程(终极教程以后只用它打包了)

目录 专栏导读库的介绍(优点)使用nuitka --help可查看所有命令库的安装1、虚拟环境安装2、在打包时候缺少某些组件&#xff0c;会提示你是否安装&#xff0c;输入是(第3步有截图)个人喜好&#xff0c;可以加上 icon参数 3、开始打包4、打包完成查看大小总结 专栏导读 &#x1f…

Linux TFTP服务器搭建

话得多说 先水一波字 TFTP&#xff08;Trivial File Transfer Protocol&#xff09;是一种简单的文件传输协议。它用于在计算机网络中传输文件&#xff0c;特别适用于在网络设备&#xff08;如开发板和Linux系统下&#xff09;代码调试等操作。TFTP使用UDP&#xff08;User Da…

春季台球行业招商和宣传大会,2025郑州台球展会3月举办

3月招商季&#xff0c;壹肆柒2025郑州台球展助力企业开拓全国台球消费市场&#xff1b; 2025中国&#xff08;郑州&#xff09;国际台球产业博览会&#xff08;壹肆柒台球展&#xff09; The 2025 China (Zhengzhou) International Billiards Industry Expo 开展时间&#xf…

[OS] 再探 kernel_threads-1

Linux内核线程&#xff08;kernel threads&#xff09;是运行在内核空间的线程&#xff0c;它们不拥有独立的地址空间&#xff0c;因此不能访问用户空间&#xff0c;但可以访问内核空间的数据结构。内核线程通常用于执行一些需要并行处理的任务&#xff0c;例如文件系统的任务、…

升维定位在开源AI智能名片2+1链动模式S2B2C商城小程序中的应用与价值

摘要&#xff1a;本文探讨了升维定位理论在开源AI智能名片21链动模式S2B2C商城小程序中的应用。阐述了升维定位对于创新型产品和创业阶段企业的适用性&#xff0c;分析开源AI智能名片21链动模式S2B2C商城小程序如何利用升维定位创造新的需求市场、成为新市场领导者&#xff0c;…

【Linux】自主shell编写

如果学习了常见的Linux命令&#xff0c;exec*函数&#xff0c;环境变量&#xff0c;那你就可以尝试一下写一个简单的shell; 下面跟着我的步骤来吧&#xff01;&#xff01;&#x1f929;&#x1f929; 输入命令行 既然要写一个shell&#xff0c;我们第一步先把这个输入命令行…

定制化的新生代 Layer1 代币经济学

原文标题&#xff1a;《Next-Gen Layer 1 Tokenomics: Three Pillars for the Token Flywheel》 撰文&#xff1a;Eren&#xff0c;Four Pillars 编译&#xff1a;Tia&#xff0c;Techub News Layer1 代币经济学的转变 最近获得大量关注和大量投资的项目&#xff08;如 Berac…

避免误修改:如何在Word中锁定指定内容?

在工作中&#xff0c;保护Word文档的某些部分免于被他人修改是一项常见需求。无论是分享给同事、客户&#xff0c;还是用作正式的合同文件&#xff0c;都需要确保关键内容不被随意更改。今天我们一起来看看&#xff0c;如何在Word文档中锁定部分内容&#xff0c;使其无法编辑修…

数据结构--线性表双向链表的实现

目录 思路设计 总体思维导图 插入部分 头插法尾插法 任意位置插入 删除部分 头结点 尾节点 中间节点 只有头结点且删除的就是头结点 ​编辑 清空链表部分 遍历清空链表的所有节点 不遍历清空 各部分代码 Main部分 MyListedList部分 IndexOutOfException部分 …

微软发布Windows 11 2024更新,新型Copilot+ AI PC功能亮相

前言 微软在Windows 11的2024更新中加强了对人工智能的应用&#xff0c;推出了新功能Copilot。 此次更新的版本号为26100.1742&#xff0c;Copilot将首先在Windows Insider中推出&#xff0c;计划于11月向特定设备和市场推广&#xff0c;用户需开启“尽快获取最新更新”选项以…

Eureka的搭建、注册和拉取

目录 搭建 动手实践 搭建EurekaServer 创建项目 编写启动类 添加application.yml文件 启动EurekaApplication ​编辑 总结 搭建EurekaServer 注册 将user-service服务注册到EurekaServer 将order-service服务注册到EurekaServer 重启order-service和user-service…

敢为天下先:论特斯拉轿车设计理念和六西格玛设计方法的应用-张驰咨询

全球竞争日益激烈的电动汽车市场&#xff0c;特斯拉通过其独特的设计理念和创新能力脱颖而出。其核心驱动因素之一&#xff0c;是特斯拉在设计和制造中的第一性原理**&#xff08;First Principles&#xff09;思维&#xff0c;以及通过应用六西格玛设计方法实现的高质量制造流…