边缘人工智能(Edge Intelligence)

news2024/12/23 5:57:36

        边缘人工智能(Edge AI)是指在边缘设备上直接运行人工智能(AI)和机器学习(ML)算法的技术。机器学习是一个广泛的领域,近年来取得了巨大的进步。它所基于的原则是,计算机可以通过从数据中学习来自主提高自己在给定任务上的性能,有时甚至超出了人类的能力。Edge AI是边缘人工智能的缩写,它是物联网系统下一个发展前沿,那么什么是边缘人工智能,如何实现边缘人工智能?

        边缘人工智能是指以直接在边缘设备上运行的机器学习算法的形式使用人工智能,机器学习是一个广泛的领域,近年来取得了巨大的进步,它所基于的原则是计算机可以通过从数据中学习来自主提高自己在给定任务上的性能有时甚至超出了人类的能力。如今,机器学习可以执行许多高级任务包括但不限于:计算机视觉,语音识别等。

        与传统的云计算模式不同,边缘人工智能将计算和分析任务下放到靠近数据源的设备上(如智能摄像头、传感器、智能手机等),而不依赖于远程服务器或云端的处理。这种方式能够显著减少延迟,降低带宽需求,提高隐私安全性,并支持实时处理,使得物联网(IoT)设备变得更加智能和自主。

        边缘计算可以减少网络传输时间,适用于需要低延迟、高响应速度的应用场景。边缘计算减少了大规模数据传输的需求,降低了网络带宽的消耗;而云计算通常需要将大量原始数据上传到云端,耗费较多的带宽资源。边缘计算将数据保留在本地设备上,增强了数据隐私和安全性;云计算可能存在数据泄露的风险,因为数据需要在网络上传输并存储在远程服务器上。

        边缘人工智能有很多实际应用,比如面部识别,可以直接在边缘设备上完成面部识别任务,如在监控摄像头上实时识别并记录通过某个区域的人员;智能家居,边缘设备如智能音箱和安全摄像头可以通过边缘AI技术进行本地数据处理,提高隐私和响应速度;自动驾驶:在自动驾驶系统中,车辆需要实时分析来自摄像头、雷达等传感器的数据,边缘AI使得车辆能够在毫秒内做出决策。

        总之,边缘人工智能通过将计算从远程云端下放至本地设备,不仅可以减少延迟、节省带宽,还能提升系统的智能化水平,并在隐私保护方面带来优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2196112.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt-QGridLayout布局类控件(43)

目录 描述 属性 使用 常规使用 垂直布局 水平布局 布局是按照相对大小进行的 拉伸系数 使用 设置水平拉伸系数 设置垂直拉伸系数 描述 Qt 中还提供了 QGridLayout ⽤来实现⽹格布局的效果.可以达到 M * N的这种⽹格的效果 属性 layoutLeftMargin左侧边距layoutRig…

Windows 安装 Maven 并配置环境变量

一、简介 Maven 是一款基于 Java 平台的项目管理和整合工具,用来构建项目的。也就是清理、编译、测试、运行、打包、安装整个过程都交给 Maven 管理,整个过程就是构建。 二、安装 Java JDK Maven 依赖 Java JDK,如果本机没有安装过 Java 的…

NASA:第三版大气痕量分子光谱(ATMOS)2 级产品,包含垂直高度(千米)网格上的痕量气体

目录 简介 摘要 代码 引用 网址推荐 0代码在线构建地图应用 机器学习 ATMOS L2 Trace Gases on Altitude Grid, Fixed Field Format V3 (ATMOSL2AF) at GES DISC 简介 高度网格上的 ATMOS L2 跟踪气体,固定字段格式 V3 (ATMOSL2AF) 这是第三版大气痕量分子…

CMake学习笔记:项目的导出和安装-install命令

一、基本语法与概念 1.文件的安装 install(FILES) 用Poco库 usr/local/poco/CMakeLists.txt中内容 举例如下: 2.目标安装 install(TARGETS) 3.导出目标与导出配置文件 将目标mylib导出名为MyModules的目标。MyModules导出目标包含了关于mylib的所有信息&#xf…

【初阶数据结构】冒泡排序和选择排序(用C语言实现,主要讲思维)

文章目录 前言1. 冒泡排序1.1 算法思想1.2 冒泡排序的代码实现1.3 冒泡排序算法的改进 2. 选择排序2.1 算法思想2.2 选择排序的代码实现 3. 写排序算法的小技巧 前言 讲到排序相信大家一定对一种排序很熟悉,它的名字就叫做冒泡排序。这个排序大家在学习各种语言时&…

【优选算法】(第二十六篇)

目录 两数相加(medium) 题目解析 讲解算法原理 编写代码 两两交换链表中的节点(medium) 题目解析 讲解算法原理 编写代码 两数相加(medium) 题目解析 1.题目链接:. - 力扣(…

随着硬件水平的提升,LabVIEW有哪些过去的编程方法被淘汰掉了

随着硬件水平的不断提升,尤其是处理器性能、存储能力、通信速度等方面的飞跃,LabVIEW的一些早期编程方法逐渐被更高效、现代的编程技术所取代。以下是一些随着硬件升级而逐步淘汰的LabVIEW编程方法和技术: 1. 低效的数据流传输方式 过去由于…

SQL执行顺序是如何工作的,为什么它如此重要?

🎯SQL执行顺序是如何工作的,为什么它如此重要? SQL查询按照以下顺序执行其语句: 1️⃣FROM / JOIN 2️⃣WHERE 3️⃣GROUP BY 4️⃣HAVING 5️⃣SELECT 6️⃣DISTINCT 7️⃣ORDER BY 8️⃣LIMIT / OFFSET 你在每个步骤中实现的技…

特定类型的图与应用 - 离散数学系列(六)

目录 1. 树和生成树 树的定义 生成树与最小生成树 2. 二分图 二分图的定义 示例:最大匹配问题 3. 欧拉图与哈密顿图 欧拉图 哈密顿图 4. 实际应用场景 1. 文件系统中的树结构 2. 网络优化中的最小生成树 3. 社交网络分析 5. 例题与练习 例题1&#xf…

sv标准研读第十三章-task和function

书接上回: sv标准研读第一章-综述 sv标准研读第二章-标准引用 sv标准研读第三章-设计和验证的building block sv标准研读第四章-时间调度机制 sv标准研读第五章-词法 sv标准研读第六章-数据类型 sv标准研读第七章-聚合数据类型 sv标准研读第八章-class sv标…

【直接原地起飞】3DMAX2025热门插件合集来啦!

强烈推荐8款3DMAX2025热门插件! 在3DMAX的广阔世界里,插件如同魔法工具,为设计师们打开了无限创意的大门。今天,我们精心挑选了8款热门插件,它们不仅功能强大,而且易于上手,定能让你的3D设计之旅…

Python从0到100(六十二):机器学习实战-预测波士顿房价

前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…

增强分析:新时代的数据洞察工具

随着数据科学和人工智能的迅猛发展,分析数据的方式也发生了显著的变化。增强分析(Augmented Analytics)是近年来涌现出的新概念,它将人工智能(AI)、机器学习(ML)和自然语言处理&…

操作系统 | 学习笔记 | 王道 | 4.2 目录

4.2 目录 4.2.1 目录的基本概念 文件目录指FCB的有序集合,一个FCB就是一个文件的目录项。与文件管理系统和文件集合相关联的是文件目录,它包含有关文件的属性、位置和所有权等。 目录管理的基本要求: 从用户的角度看,目录在用户…

win11下AMD CPU支持WSL2

除开常规的配置: 1.打开虚拟机 2.打开hyper-v 3.bios启用虚拟机 还需要做如下操作: 管理员方式进入Powershell: bcdedit /set hypervisorlaunchtype auto 成功案例: win11: cpu: amd

00_概览_kafka

kafka 概述kafka版本流程启动zk配置zk启动命令 启动kafka修改server.properties启动命令 kafka脚本-命令行操作命令行创建主题脚本查看主题主题详情修改主题删除主题大量日志解决方案 控制台生产者消费者代码 生产者 消费者kafka-toolkafka数据文件 扩展横向扩展纵向扩展分区消…

【小沐学GIS】QGIS导出OpenStreetMap数据(QuickOSM、OSM)

文章目录 1、简介1.1 OSM1.2 QuickOSM1.3 Overpass Turbo 2、插件安装3、插件使用3.1 快速查询(boundary边界)3.2 快速查询(railway铁路)3.3 快速查询(boundaryadmin_level行政边界)3.4 快速查询&#xff0…

OpenFeign-查询参数-日期格式化:LocalDate、Date、@DateTimeFormat(低版本无效)

创建时间:2024-10-08 本文适用的依赖版本: spring-boot-starter-parent:3.3.3 spring-cloud-starter-openfeign:4.1.3 一、场景 在 REST API 的查询接口中,日期查询参数 的格式一般是标准(ISO 8601&#x…

BiGRU-Transformer时间序列预测(多输入单预测)——基于Pytorch框架

1 介绍 本文将介绍一种基于Transformer和BiGRU(双向门控循环单元)的混合模型及其在时间序列预测中的应用。本模特适用于多输入单输出预测,适合风电预测,功率预测,负荷预测等等。 2 方法 首先,从Excel文件…