【Llamaindex RAG实践】

news2024/11/24 6:48:20

基础任务 (完成此任务即完成闯关)

  • 任务要求:基于 LlamaIndex 构建自己的 RAG 知识库,寻找一个问题 A 在使用 LlamaIndex 之前InternLM2-Chat-1.8B模型不会回答,借助 LlamaIndex 后 InternLM2-Chat-1.8B 模型具备回答 A 的能力,截图保存。

llamaindex+Internlm2 RAG实践

本文将分为以下几个部分来介绍,如何使用 LlamaIndex 来部署 InternLM2 1.8B(以 InternStudio 的环境为例)

  • 前置知识
  • 环境、模型准备
  • LlamaIndex HuggingFaceLLM
  • LlamaIndex RAG

1. 前置知识

正式介绍检索增强生成(Retrieval Augmented Generation,RAG)技术以前,大家不妨想想为什么会出现这样一个技术。 给模型注入新知识的方式,可以简单分为两种方式,一种是内部的,即更新模型的权重,另一个就是外部的方式,给模型注入格外的上下文或者说外部信息,不改变它的的权重。 第一种方式,改变了模型的权重即进行模型训练,这是一件代价比较大的事情,大语言模型具体的训练过程,可以参考InternLM2技术报告。第二种方式,并不改变模型的权重,只是给模型引入格外的信息。类比人类编程的过程,第一种方式相当于你记住了某个函数的用法,第二种方式相当于你阅读函数文档然后短暂的记住了某个函数的用法。 

RAG 效果比对

如图所示,由于xtuner是一款比较新的框架, InternLM2-Chat-1.8B 训练数据库中并没有收录到它的相关信息。左图中问答均未给出准确的答案。右图未对 InternLM2-Chat-1.8B 进行任何增训的情况下,通过 RAG 技术实现的新增知识问答。

进入开发机后,创建新的conda环境,命名为 llamaindex,在命令行模式下运行:

conda create -n llamaindex python=3.10

复制完成后,在本地查看环境。

conda env list

结果如下所示。

# conda environments:
#
base                  *  /root/.conda
llamaindex               /root/.conda/envs/llamaindex

运行 conda 命令,激活 llamaindex 然后安装相关基础依赖 python 虚拟环境:

conda activate llamaindex
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

安装python 依赖包

pip install einops==0.7.0 protobuf==5.26.1

环境激活后,命令行左边会显示当前(也就是 llamaindex )的环境名称,如下图所示: 

2.2 安装 Llamaindex

安装 Llamaindex和相关的包

conda activate llamaindex
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0

2.3 下载 Sentence Transformer 模型

源词向量模型 Sentence Transformer:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型) 运行以下指令,新建一个python文件

cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py

打开download_hf.py 贴入以下代码

import os

# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')

然后,在 /root/llamaindex_demo 目录下执行该脚本即可自动开始下载:

cd /root/llamaindex_demo
conda activate llamaindex
python download_hf.py

更多关于镜像使用可以移步至 HF Mirror 查看。

2.4 下载 NLTK 相关资源

我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk 的一些资源。正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。 我们用以下命令下载 nltk 资源并解压到服务器上:

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

之后使用时服务器即会自动使用已有资源,无需再次下载

3. LlamaIndex HuggingFaceLLM

运行以下指令,把 InternLM2 1.8B 软连接出来

cd ~/model
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./

运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch llamaindex_internlm.py

打开llamaindex_internlm.py 贴入以下代码

from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.llms import ChatMessage
llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)

rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")])
print(rsp)

之后运行

conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_internlm.py

结果为:

 回答的效果并不好,并不是我们想要的xtuner。

4. LlamaIndex RAG

安装 LlamaIndex 词嵌入向量依赖

conda activate llamaindex
pip install llama-index-embeddings-huggingface==0.2.0 llama-index-embeddings-instructor==0.1.3

运行以下命令,获取知识库

cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./

运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch llamaindex_RAG.py

打开llamaindex_RAG.py贴入以下代码

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
    model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model

llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm

#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")

print(response)

之后运行

conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_RAG.py

结果为: 

借助RAG技术后,就能获得我们想要的答案了。

5. LlamaIndex web

运行之前首先安装依赖

pip install streamlit==1.36.0

运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch app.py

打开app.py贴入以下代码

import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")

# 初始化模型
@st.cache_resource
def init_models():
    embed_model = HuggingFaceEmbedding(
        model_name="/root/model/sentence-transformer"
    )
    Settings.embed_model = embed_model

    llm = HuggingFaceLLM(
        model_name="/root/model/internlm2-chat-1_8b",
        tokenizer_name="/root/model/internlm2-chat-1_8b",
        model_kwargs={"trust_remote_code": True},
        tokenizer_kwargs={"trust_remote_code": True}
    )
    Settings.llm = llm

    documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
    index = VectorStoreIndex.from_documents(documents)
    query_engine = index.as_query_engine()

    return query_engine

# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
    st.session_state['query_engine'] = init_models()

def greet2(question):
    response = st.session_state['query_engine'].query(question)
    return response

      
# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]    

    # Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]

st.sidebar.button('Clear Chat History', on_click=clear_chat_history)

# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
    return greet2(prompt_input)

# User-provided prompt
if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.write(prompt)

# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = generate_llama_index_response(prompt)
            placeholder = st.empty()
            placeholder.markdown(response)
    message = {"role": "assistant", "content": response}
    st.session_state.messages.append(message)

之后运行

streamlit run app.py

然后在命令行点击,红框里的url。

即可进入以下网页,然后就可以开始尝试问问题了。

询问结果为:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2193857.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

每日OJ题_牛客_重排字符串_贪心_C++_Java

目录 牛客_重排字符串_贪心 题目解析 C代码 Java代码 牛客_重排字符串_贪心 重排字符串 (nowcoder.com) 描述: 小红拿到了一个只由小写字母组成的字符串。她准备把这个字符串重排(只改变字母的顺序,不改变数量) …

滑动窗口--(中篇)

将X减到0的最小操作数 给你一个整数数组 nums 和一个整数 x 。每一次操作时,你应当移除数组 nums 最左边或最右边的元素,然后从 x 中减去该元素的值。请注意,需要 修改 数组以供接下来的操作使用。 如果可以将 x 恰好 减到 0 ,返…

Tomcat 项目配置指南

在实际工作中,我们所维护的项目可能与我们平时做的项目不一样。其中一种情况就是需要自己配置Tomcat服务。 下面笔者为大家介绍Tomcat基础的配置以及可能遇到的问题。 文章目录 一、Tomcat 配置二、常见报错及解决方案参考 一、Tomcat 配置 1. 下载 Tomcat 从 Apa…

一款完全开源并免费的监测与分析系统,支持监测,预警,分析,报告,支持本地化部署(附源码)

前言 在当今这个信息爆炸的时代,企业和个人都需要时刻了解网络上的动态,以便及时了解自身品牌形象和社会舆论的变化。然而,现有的舆情监测工具往往价格昂贵,且cao作复杂,难以满足普通用户的需求。 在这种背景下&…

基于SSM实现的求职招聘系统 设计与实现

一、项目简介 求职招聘系统,基于SSM实现的求职招聘系统 二、技术实现 后台框架:Spring、SpringMVC、MyBatis UI界面:JSP、jQuery 、H-ui 数据库:MySQL 下载地址 基于SSM实现的求职招聘系统源码数据库资源-CSDN文库 三、系…

音频文件重采样 - python 实现

在处理音频文件的时候,经常会将原音频进行统一的重采样处理,设置为相同的采样率,本示例,就是将44100采样率的音频,重采样为16000. 安装对应的python 库:librosa 和 soundfile. pip install soundfile pip i…

Vue前端框架的基础配置

登录界面添加背景图 通过在登录界面的vue文件中&#xff0c;设置div标签的background-image属性&#xff0c;加载背景图 <style scoped> .myvue{width:100%;height: 750px; //添加背景图的地址background-image: url(../assets/oa.jpeg);background-size: cover;backgr…

Linux更改固定IP地址

1.VMware里更改虚拟网络 一: 二: 三:确定就好了 2.修改Linux系统的固定IP 一:进入此文件 效果如下: 执行以下命令: 此时IP已更改 3.远程连接 这个是前提!!! 更改网络编辑器后网络适配器可能会修改,我就是遇着这个,困住我了一会 一:可以以主机IP对应连接 连接成功 二:主机名连…

[OS] 2.Wait for signal (do_wait),task_struct

Wait for signal (do_wait) Linux 内核中 do_wait() 函数的实现&#xff0c;该函数是父进程等待子进程结束的系统调用的一部分。它通过在内核模式下等待信号&#xff0c;处理进程终止以及与父子进程相关的机制。让我们详细解读您提供的信息&#xff0c;涉及 do_wait() 的执行过…

微软推出针对个人的 “AI伴侣” Copilot 会根据用户的行为模式、习惯自动进化

微软推出了为每个人提供的“AI伴侣”Copilot&#xff0c;它不仅能够理解用户的需求&#xff0c;还能根据用户的日常习惯和偏好进行适应和进化。帮助处理各种任务和复杂的日常生活场景。 它能够根据用户的生活背景提供帮助和建议&#xff0c;保护用户的隐私和数据安全。Copilot…

Crypto虐狗记---”你“和小鱼(八)

前言&#xff1a;剧情八 提示&#xff1a; 下载&#xff1a; 只给了公钥 那么可以用RsaCtfTool去分离公钥---》 得到(e&#xff0c;n)&#xff1a; 如何安装参考&#xff1a; kail下安装RsaCtfTool - 九皋777 - 博客园 (cnblogs.com) 已知n&#xff0c;那么去得到p q 或者使…

智能制造领域的系统都有啥,MES、APS、PLC、SCADA等

提及制造业&#xff0c;大家都能想到工业4.0.那么与工业4.0紧密相连的B端系统都有哪些类型的&#xff0c;本文为大家详细解读下。 在智能制造领域&#xff0c;常见的系统包括MES&#xff08;制造执行系统&#xff09;、APS&#xff08;高级计划与排程系统&#xff09;、PLC&am…

Oracle 数据库安装和配置详解

Oracle 数据库安装和配置详解 Oracle 数据库是一款功能强大、广泛使用的企业级关系数据库管理系统 (RDBMS)&#xff0c;适用于处理大型数据库和复杂事务。本文将介绍如何在 Linux 和 Windows 环境下安装 Oracle 数据库&#xff0c;并对其进行基本配置&#xff0c;帮助开发者快…

maven指定模块快速打包idea插件Quick Maven Package

问题背景描述 在实际开发项目中&#xff0c;我们的maven项目结构可能不是单一maven项目结构&#xff0c;项目一般会用parent方式将各个项目进行规范&#xff1b; 随着组件的数量增加&#xff0c;就会引入一个问题&#xff1a;我们只想打包某一个修改后的组件A时就变得很不方便…

8位单片机与32位单片机

8位单片机与32位单片机 8位与32位指的是什么 单片机的8位或32位说的是什么呢&#xff1f;要搞懂这个问题&#xff0c;首先要搞明白8位或32位说的是单片机上的哪一个部件。 这是单片机的内部框图。单片机内部由这么多部件构成&#xff0c;并不单单是一个CPU&#xff0c;它内部…

NASA:GES DISC 的 ATMOS L1 光谱和运行日志 V3 (ATMOSL1)大气痕量分子光谱(ATMOS)1 级产品

目录 简介 变量 代码 引用 网址推荐 0代码在线构建地图应用 机器学习 ATMOS L1 Spectra and Runlogs V3 (ATMOSL1) at GES DISC 简介 这是第三版大气痕量分子光谱&#xff08;ATMOS&#xff09;1 级产品&#xff0c;包含 netCDF 格式的光谱和运行日志&#xff08;即 &…

Valve通过新的基础架构设计加强对Arch Linux的支持

Valve 宣布与 Arch Linux 发行版开展新的合作。 该公司透露&#xff0c;它将为 Arch Linux 的两项重要计划–构建服务基础设施和安全签名飞地–提供资金支持。这次合作将为 Arch Linux 解决一些老大难问题。 志愿开发人员利用业余时间开发项目。 然而&#xff0c;有些任务需要投…

查缺补漏----信道利用率与数据传输速率(计算题)

1.发送窗口与接收窗口 GBN的发送窗口为&#xff0c;若 大于 &#xff0c;则会造成接收方无法分辨新数据帧和旧数据帧。 这其实是所有重传协议必须满足的要求&#xff0c;即发送窗口为&#xff0c;例如这道题&#xff1a; 发送窗口为就是非常重要的条件&#xff0c;后面有讲解。…

认知杂谈100《穿越顺逆之镜》

内容摘要&#xff1a; 顺境和逆境都是成长的催化剂&#xff0c;但它们的作用并非绝对。顺境有助于积累经验&#xff0c;但可能导致自满和错误估计自身能力。逆境能激发智慧&#xff0c;但也可能使人陷入绝望&#xff0c;且失败的原因可能是不可控的外部因素。 成功可能让我们变…

【C语言】预处理指令详解

目录 一、预定义符号 二、#define 定义常量 三、#define 定义宏 &#xff08;1&#xff09;宏定义的使用 &#xff08;2&#xff09;带副作用的宏参数 &#xff08;3&#xff09;宏替换的规则 &#xff08;4&#xff09;宏与函数对比 &#xff08;5&#xff09;#和## …