目录
条件变量函数
等待条件满足
阻塞队列
升级版
信号量
POSIX信号量
环形队列
条件变量函数
等待条件满足
int pthread_cond_wait(pthread_cond_t *restrict cond,pthread_mutex_t *restrict mutex);
参数:
cond:要在这个条件变量上等待
mutex:互斥量,后面详细解释
pthread_cond_wait:第二个参数必须是正在使用的互斥锁
a.pthread_cond_wait:该函数调用时,会以原子性的方式将锁释放,并将自己挂起
b.pthread_cond_wait:该函数被唤醒返回的时候,会自动从新获取锁
阻塞队列
blockqueue.hpp
#pragma once
#include<iostream>
#include<string>
#include<queue>
#include<unistd.h>
#include<pthread.h>
using namespace std;
static const int gmaxcap=5;
template<class T>
class BlockQueue
{
public:
BlockQueue(const int& maxcap=gmaxcap)
:_maxcap(maxcap)
{
pthread_mutex_init(&_mutex,nullptr);
pthread_cond_init(&_pcond,nullptr);
pthread_cond_init(&_ccond,nullptr);
}
void push(const T& in)
{
pthread_mutex_lock(&_mutex);
while (is_full())
pthread_cond_wait(&_pcond,&_mutex);//生产条件不满足
_q.push(in);
//阻塞队列中一定有数据
pthread_cond_signal(&_ccond);
pthread_mutex_unlock(&_mutex);
}
void pop(T* out)
{
pthread_mutex_lock(&_mutex);
while(is_empty)
pthread_cond_wait(&_ccond,&_mutex);
*out=_q.front();
_q.pop();
//队列中一定有一个空位置
pthread_cond_signal(&_pcond);
pthread_mutex_unlock(&_mutex);
}
~BlockQueue()
{
pthread_mutex_destroy(&_mutex);
pthread_cond_destroy(&_pcond);
pthread_cond_destroy(&_ccond);
}
private:
bool is_empty()
{
return _q.empty();
}
bool is_full()
{
return _q.size()==_maxcap;
}
private:
queue<T> _q;
int _maxcap;
pthread_mutex_t _mutex;
pthread_cond_t _pcond;//生产者对应的条件变量
pthread_cond_t _ccond;
};
task.hpp
#pragma once
#include<iostream>
#include<cstdio>
#include<string>
#include<functional>
using namespace std;
class Task
{
using func_t=function<int(int,int,char)>;
public:
Task()
{}
Task(int x,int y,char op,func_t func)
:_x(x),_y(y),_op(op),_callback(func)
{}
string operator()()
{
int result=_callback(_x,_y,_op);
char buffer[1024];
snprintf(buffer,sizeof buffer,"%d %c %d = %d ",_x,_op,_y,result);
return buffer;
}
string toTaskString()
{
char buffer[1024];
snprintf(buffer,sizeof buffer,"%d %c %d = ? ",_x,_op,_y);
return buffer;
}
private:
int _x;
int _y;
char _op;
func_t _callback;
};
升级版
blockqueue.hpp
#pragma once
#include<iostream>
#include<string>
#include<queue>
#include<unistd.h>
#include<pthread.h>
using namespace std;
static const int gmaxcap=5;
template<class T>
class BlockQueue
{
public:
BlockQueue(const int& maxcap=gmaxcap)
:_maxcap(maxcap)
{
pthread_mutex_init(&_mutex,nullptr);
pthread_cond_init(&_pcond,nullptr);
pthread_cond_init(&_ccond,nullptr);
}
void push(const T& in)
{
pthread_mutex_lock(&_mutex);
while (is_full())
pthread_cond_wait(&_pcond,&_mutex);//生产条件不满足
_q.push(in);
//阻塞队列中一定有数据
pthread_cond_signal(&_ccond);
pthread_mutex_unlock(&_mutex);
}
void pop(T* out)
{
pthread_mutex_lock(&_mutex);
while(is_empty)
pthread_cond_wait(&_ccond,&_mutex);
*out=_q.front();
_q.pop();
//队列中一定有一个空位置
pthread_cond_signal(&_pcond);
pthread_mutex_unlock(&_mutex);
}
~BlockQueue()
{
pthread_mutex_destroy(&_mutex);
pthread_cond_destroy(&_pcond);
pthread_cond_destroy(&_ccond);
}
private:
bool is_empty()
{
return _q.empty();
}
bool is_full()
{
return _q.size()==_maxcap;
}
private:
queue<T> _q;
int _maxcap;
pthread_mutex_t _mutex;
pthread_cond_t _pcond;//生产者对应的条件变量
pthread_cond_t _ccond;
};
task.hpp
#pragma once
#include<iostream>
#include<cstdio>
#include<string>
#include<functional>
using namespace std;
class CalTask
{
using func_t=function<int(int,int,char)>;
public:
CalTask()
{}
CalTask(int x,int y,char op,func_t func)
:_x(x),_y(y),_op(op),_callback(func)
{}
string operator()()
{
int result=_callback(_x,_y,_op);
char buffer[1024];
snprintf(buffer,sizeof buffer,"%d %c %d = %d ",_x,_op,_y,result);
return buffer;
}
string toTaskString()
{
char buffer[1024];
snprintf(buffer,sizeof buffer,"%d %c %d = ? ",_x,_op,_y);
return buffer;
}
private:
int _x;
int _y;
char _op;
func_t _callback;
};
const string oper="+-*/%";
int mymath(int x,int y,char op)
{
int result=0;
switch (op)
{
case '+':
result=x+y;
break;
case '-':
result=x-y;
break;
case '*':
result=x*y;
break;
case '/':
{
if(y==0)
{
cerr<<"div zero error!"<<endl;
result=-1;
}
else result=x/y;
}
break;
case '%':
{
if(y==0)
{
cerr<<"div zero error!"<<endl;
result=-1;
}
else result=x%y;
}
break;
default:
break;
}
return result;
}
class SaveTask
{
typedef function<void(const string&)> func_t;
public:
SaveTask()
{}
SaveTask(const string& message,func_t func)
:_message(message),_func(func)
{}
void operator()()
{
_func(_message);
}
private:
string _message;
func_t _func;
};
void Save(const string& message)
{
const string target="./log.txt";
FILE* fp=fopen(target.c_str(),"a+");
if(!fp)
{
cerr<<"fopen error"<<endl;
return;
}
fputs(message.c_str(),fp);
fputs("\n",fp);
fclose(fp);
}
MainCp.cc
#include"BlockQueue.hpp"
#include"task.hpp"
#include<sys/types.h>
#include<unistd.h>
#include<ctime>
//
//
template<class C,class S>
class BlockQueues
{
public:
BlockQueue<C>* c_bq;
BlockQueue<S>* s_bq;
};
void* consumer(void* bqs_)
{
BlockQueue<CalTask>* bq=(static_cast<BlockQueues<CalTask,SaveTask>* >(bqs_))->c_bq;
BlockQueue<SaveTask>* save_bq=(static_cast<BlockQueues<CalTask,SaveTask>* >(bqs_))->s_bq;
while(true)
{
/* consumer */
// int data;
// bq->pop(&data);
CalTask t;
bq->pop(&t);
string result=t();
cout<<"消费数据: "<<result<<endl;
SaveTask save(result,Save);
save_bq->push(save);
cout<<"推送保存任务完成..."<<endl;
sleep(1);
}
return nullptr;
}
void* producter(void* bqs_)
{
BlockQueue<CalTask>* bq=(static_cast<BlockQueues<CalTask,SaveTask>* >(bqs_))->c_bq;
while (true)
{
//producer
int x=rand()%10+1;
int y=rand()%5;
int operCode=rand()%oper.size();
CalTask t(x,y,oper[operCode],mymath);
bq->push(t);
cout<<"生产任务: "<<t.toTaskString()<<endl;
// sleep(1);
}
return nullptr;
}
void* saver(void* bqs_)
{
BlockQueue<SaveTask>* save_bq=(static_cast<BlockQueues<CalTask,SaveTask>* >(bqs_))->s_bq;
while (true)
{
SaveTask t;
save_bq->pop(&t);
t();
cout << "推送保存任务完成..." << endl;
}
return nullptr;
}
int main()
{
srand((unsigned long)time(nullptr));
BlockQueues<CalTask,SaveTask> bqs;
bqs.c_bq=new BlockQueue<CalTask>();
bqs.s_bq=new BlockQueue<SaveTask>();
pthread_t c,p,s;
pthread_create(&c,nullptr,consumer,&bqs);
pthread_create(&p,nullptr,producter,&bqs);
pthread_create(&s,nullptr,saver,&bqs);
pthread_join(c,nullptr);
pthread_join(p,nullptr);
pthread_join(s,nullptr);
delete bqs.c_bq;
delete bqs.s_bq;
return 0;
}
./MainCp
生产任务: 9 * 0 = ?
生产任务: 9 - 4 = ?
生产任务: 8 - 0 = ?
生产任务: 3 - 4 = ?
生产任务: 6 + 1 = ?
消费数据: 9 * 0 = 0
推送保存任务完成...
生产任务: 2 - 2 = ?
推送保存任务完成...
消费数据: 9 - 4 = 5
推送保存任务完成...
生产任务: 9 - 0 = ?
推送保存任务完成...
消费数据: 8 - 0 = 8
推送保存任务完成...
生产任务: 6 * 3 = ?
推送保存任务完成...
消费数据: 3 - 4 = -1
推送保存任务完成...
生产任务: 4 * 4 = ?
推送保存任务完成...
消费数据: 6 + 1 = 7
推送保存任务完成...
生产任务: 5 % 4 = ?
推送保存任务完成...
^C
zhangsan@ubuntu:~/practice-using-ubuntu/20241005/blockqueue$ cat log.txt
9 * 0 = 0
9 - 4 = 5
8 - 0 = 8
3 - 4 = -1
6 + 1 = 7
信号量
a.信号量的本质就是计数器
b.只有拥有信号量,在未来就一定能拥有临界资源的一部分
申请信号量的本质就是:对临界资源中特点小块资源的预定机制
sem-- 申请资源 P 必须保证操作的原子性
sem++ 释放资源 V 必须保证操作的原子性
POSIX信号量
环形队列
RingQueue.hpp
#pragma once
#include<iostream>
#include<cassert>
#include<vector>
#include<ctime>
#include<cstdlib>
#include<semaphore.h>
#include<unistd.h>
#include<pthread.h>
static const int gcap=5;
template<class T>
class RingQueue
{
private:
void P(sem_t& sem)
{
int n=sem_wait(&sem);
assert(n==0);
}
void V(sem_t& sem)
{
int n=sem_post(&sem);
assert(n==0);
}
public:
RingQueue(const int& cap=gcap):_queue(cap),_cap(cap)
{
int n=sem_init(&_spaceSem,0,_cap);
assert(n==0);
n=sem_init(&_dataSem,0,0);
assert(n==0);
_productorStep=_consumerStep=0;
pthread_mutex_init(&_pmutex,nullptr);
pthread_mutex_init(&_cmutex,nullptr);
}
void Push(const T& in)
{
P(_spaceSem);//productor
pthread_mutex_lock(&_pmutex);
_queue[_productorStep++]=in;
_productorStep%=_cap;
pthread_mutex_unlock(&_pmutex);//更高效
V(_dataSem);
}
void Pop(T* out)
{
pthread_mutex_lock(&_cmutex);
P(_dataSem);
*out=_queue[_consumerStep++];
_consumerStep%=_cap;
V(_spaceSem);
pthread_mutex_unlock(&_cmutex);
}
~RingQueue()
{
sem_destroy(&_spaceSem);
sem_destroy(&_dataSem);
pthread_mutex_destroy(&_pmutex);
pthread_mutex_destroy(&_cmutex);
}
private:
vector<T> _queue;
int _cap;
sem_t _spaceSem;//生产者->空间资源
sem_t _dataSem;
int _productorStep;
int _consumerStep;
pthread_mutex_t _pmutex;
pthread_mutex_t _cmutex;
};
task.hpp
#pragma once
#include<iostream>
#include<cstdio>
#include<string>
#include<functional>
using namespace std;
class Task
{
using func_t=function<int(int,int,char)>;
public:
Task()
{}
Task(int x,int y,char op,func_t func)
:_x(x),_y(y),_op(op),_callback(func)
{}
string operator()()
{
int result=_callback(_x,_y,_op);
char buffer[1024];
snprintf(buffer,sizeof buffer,"%d %c %d = %d ",_x,_op,_y,result);
return buffer;
}
string toTaskString()
{
char buffer[1024];
snprintf(buffer,sizeof buffer,"%d %c %d = ? ",_x,_op,_y);
return buffer;
}
private:
int _x;
int _y;
char _op;
func_t _callback;
};
const string oper="+-*/%";
int mymath(int x,int y,char op)
{
int result=0;
switch (op)
{
case '+':
result=x+y;
break;
case '-':
result=x-y;
break;
case '*':
result=x*y;
break;
case '/':
{
if(y==0)
{
cerr<<"div zero error!"<<endl;
result=-1;
}
else result=x/y;
}
break;
case '%':
{
if(y==0)
{
cerr<<"div zero error!"<<endl;
result=-1;
}
else result=x%y;
}
break;
default:
break;
}
return result;
}
main.cc
#include"RingQueue.hpp"
#include"task.hpp"
using namespace std;
void* ProductorRoutine(void* rq)
{
RingQueue<Task>* ringqueue=static_cast<RingQueue<Task>* >(rq);
while (true)
{
/* code */
int x=rand()%100;
int y=rand()%50;
char op=oper[rand()%oper.size()];
Task t(x,y,op,mymath);
ringqueue->Push(t);
cout<<"生产者派发了一个任务: "<<t.toTaskString()<<endl;
sleep(1);
}
}
void* ConsumerRoutine(void* rq)
{
RingQueue<Task>* ringqueue=static_cast<RingQueue<Task>* >(rq);
while (true)
{
/* code */
Task t;
ringqueue->Pop(&t);
string result=t();
cout<<"消费者消费了一个任务"<<result<<endl;
}
}
int main()
{
srand((unsigned int)time(nullptr));
RingQueue<Task>* rq=new RingQueue<Task>();
pthread_t p,c;
pthread_create(&p,nullptr,ProductorRoutine,rq);
pthread_create(&c,nullptr,ConsumerRoutine,rq);
pthread_join(p,nullptr);
pthread_join(c,nullptr);
delete rq;
return 0;
}