4. 微分
4.4 复合函数求导法则及其应用
【例4.4.3】
y
=
e
1
+
cos
x
y=e^{\sqrt{1+\cos x}}
y=e1+cosx,求
y
′
y'
y′
【解】
y
′
=
e
1
+
cos
x
⋅
1
2
1
+
cos
x
⋅
(
−
sin
x
)
=
−
sin
x
2
1
+
cos
x
e
1
+
cos
x
y'=e^{\sqrt{1+\cos x}}\cdot\frac{1}{2\sqrt{1+\cos x}}\cdot(-\sin x)=-\frac{\sin x}{2\sqrt{1+\cos x}}e^{\sqrt{1+\cos x}}
y′=e1+cosx⋅21+cosx1⋅(−sinx)=−21+cosxsinxe1+cosx
4.4.2 幂指函数求导法则
y
=
f
(
x
)
=
u
(
x
)
v
(
x
)
y=f(x)=u(x)^{v(x)}
y=f(x)=u(x)v(x)
两边取对数得
ln
y
=
ln
f
(
x
)
=
v
(
x
)
ln
u
(
x
)
\ln y=\ln f(x)=v(x)\ln u(x)
lny=lnf(x)=v(x)lnu(x)
等式两边同时对
x
x
x求导得
1
y
y
′
=
1
u
(
x
)
v
(
x
)
y
′
=
v
′
(
x
)
ln
u
(
x
)
+
v
(
x
)
u
(
x
)
u
′
(
x
)
\frac{1}{y}y'=\frac{1}{u(x)^{v(x)}}y'=v'(x)\ln u(x)+\frac{v(x)}{u(x)}u'(x)
y1y′=u(x)v(x)1y′=v′(x)lnu(x)+u(x)v(x)u′(x)
y
′
(
x
)
=
u
(
x
)
v
(
x
)
(
v
′
(
x
)
ln
u
(
x
)
+
v
(
x
)
u
′
(
x
)
u
(
x
)
)
y'(x)=u(x)^{v(x)}(v'(x)\ln u(x)+\frac{v(x)u'(x)}{u(x)})
y′(x)=u(x)v(x)(v′(x)lnu(x)+u(x)v(x)u′(x))
【例】
y
=
(
sin
x
)
cos
x
y=(\sin x)^{\cos x}
y=(sinx)cosx,求
y
′
y'
y′
【解】
ln
y
=
cos
x
ln
(
sin
x
)
\ln y=\cos x\ln(\sin x)
lny=cosxln(sinx)
y
′
y
=
−
sin
x
ln
(
sin
x
)
+
cos
x
1
sin
x
⋅
cos
x
\frac{y'}{y}=-\sin x\ln(\sin x)+\cos x\frac{1}{\sin x}\cdot \cos x
yy′=−sinxln(sinx)+cosxsinx1⋅cosx
y
′
=
(
sin
x
)
cos
x
(
cos
2
x
sin
x
−
sin
x
ln
(
sin
x
)
)
y'=(\sin x)^{\cos x}(\frac{\cos ^2 x}{\sin x}-\sin x\ln(\sin x))
y′=(sinx)cosx(sinxcos2x−sinxln(sinx))
4.4.3 导数运算法则和微分运算法则
表要记住
4.4.4 一阶微分形式不变性
只有一阶微分有形式不变性
- y = f ( u ) , y ′ ( u ) = f ′ ( u ) , d y = f ′ ( u ) d u , u y=f(u),y'(u)=f'(u),dy=f'(u)du,u y=f(u),y′(u)=f′(u),dy=f′(u)du,u是自变量;
- y = f ( u ) , u = g ( x ) , y = f ( g ( x ) ) , y ′ ( x ) = f ′ ( u ) g ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) , d y = f ′ ( g ( x ) ) g ′ ( x ) d x = f ′ ( g ( x ) ) d g ( x ) = f ′ ( u ) d u , u y=f(u),u=g(x),y=f(g(x)),y'(x)=f'(u)g'(x)=f'(g(x))g'(x),dy = f'(g(x))g'(x)dx=f'(g(x))dg(x)=f'(u)du,u y=f(u),u=g(x),y=f(g(x)),y′(x)=f′(u)g′(x)=f′(g(x))g′(x),dy=f′(g(x))g′(x)dx=f′(g(x))dg(x)=f′(u)du,u是中间变量;
不管 u u u是自变量还是中间变量,都有一个式子成立即 d y = f ′ ( u ) d u dy=f'(u)du dy=f′(u)du,这就叫做一阶微分的形式不变性。
4.4.5 隐函数得求导与求微分
隐函数的表达式:
F
(
x
,
y
)
=
0
F(x,y)=0
F(x,y)=0
【例】
x
2
a
2
+
y
2
b
2
=
1
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1
a2x2+b2y2=1,限定
y
>
0
y>0
y>0就是上半椭圆,
y
<
0
y<0
y<0就是下半椭圆,求微分。
d
(
x
2
a
2
+
y
2
b
2
)
=
0
d(\frac{x^2}{a^2}+\frac{y^2}{b^2})=0
d(a2x2+b2y2)=0
即
1
a
2
2
x
d
x
+
1
b
2
2
y
d
y
=
0
\frac{1}{a^2}2xdx+\frac{1}{b^2}2ydy=0
a212xdx+b212ydy=0
亦即
d
y
=
−
b
2
a
2
⋅
x
y
d
x
dy=-\frac{b^2}{a^2}\cdot\frac{x}{y}dx
dy=−a2b2⋅yxdx
所以
d
y
d
x
=
−
b
2
a
2
⋅
x
y
\frac{dy}{dx}=-\frac{b^2}{a^2}\cdot\frac{x}{y}
dxdy=−a2b2⋅yx
【例4.4.5】
e
x
y
+
x
2
y
−
1
=
0
e^{xy}+x^2y-1=0
exy+x2y−1=0,求
y
′
.
y'.
y′.
【解】它的显函数写不出来,用隐函数求导法则
左右两边对
x
x
x求导
d
d
x
(
e
x
y
+
x
2
y
−
1
)
=
0
\frac{d}{dx}(e^{xy}+x^2y-1)=0
dxd(exy+x2y−1)=0
则
e
x
y
(
y
+
x
y
′
)
+
2
x
y
+
x
2
y
′
=
0
e^{xy}(y+xy')+2xy+x^2y'=0
exy(y+xy′)+2xy+x2y′=0
y
′
(
x
)
=
−
2
x
y
+
y
e
x
y
x
e
x
y
+
x
2
=
−
(
e
x
y
+
2
x
)
y
(
e
x
y
+
x
)
x
y'(x)=-\frac{2xy+ye^{xy}}{xe^{xy}+x^2}=-\frac{\left(\mathrm{e}^{x y}+2 x\right) y}{\left(\mathrm{e}^{x y}+x\right) x}
y′(x)=−xexy+x22xy+yexy=−(exy+x)x(exy+2x)y
【例4.4.6】
sin
y
2
=
cos
x
\sin y^2=\cos \sqrt{x}
siny2=cosx,求
y
′
y'
y′
【解】等式两边同时求微分得
2
y
cos
y
2
d
y
=
−
sin
x
⋅
1
2
x
d
x
2y\cos y^2 dy=-\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}dx
2ycosy2dy=−sinx⋅2x1dx
由一阶微分的形式不变性
y
′
=
d
y
d
x
=
−
sin
x
4
y
(
cos
y
2
)
x
y' =\frac{dy}{dx}=-\frac{\sin\sqrt{x}}{4y(\cos y^2) \sqrt{x}}
y′=dxdy=−4y(cosy2)xsinx
【例4.4.7】
e
x
+
y
−
x
y
−
e
=
0
e^{x+y}-xy-e=0
ex+y−xy−e=0几何上表示平面上一条曲线,
(
0
,
1
)
(0,1)
(0,1)在曲线上,求过
(
0
,
1
)
(0,1)
(0,1)的切线方程。
【解】等式两边求导得
e
x
+
y
(
1
+
y
′
)
−
y
−
x
y
′
=
0
e^{x+y}(1+y')-y-xy'=0
ex+y(1+y′)−y−xy′=0
即
y
′
(
x
)
=
y
−
e
x
+
y
e
x
+
y
−
x
y'(x)=\frac{y-e^{x+y}}{e^{x+y}-x}
y′(x)=ex+y−xy−ex+y
将
(
0
,
1
)
(0,1)
(0,1)代入
y
′
(
x
)
y'(x)
y′(x),则
y
′
(
0
)
=
1
−
e
1
e
1
−
0
=
1
−
e
e
y'(0)=\frac{1-e^{1}}{e^{1}-0}=\frac{1-e}{e}
y′(0)=e1−01−e1=e1−e
则切线方程为
y
−
1
=
1
−
e
e
x
y-1=\frac{1-e}{e}x
y−1=e1−ex
4.4.6 归纳
(1)
y
=
1
g
(
x
)
,
y
′
=
−
g
′
(
x
)
g
2
(
x
)
y=\frac{1}{g(x)},y'=-\frac{g'(x)}{g^2(x)}
y=g(x)1,y′=−g2(x)g′(x),也可以看成
y
=
1
u
,
u
=
g
(
x
)
,
y
′
=
−
1
u
2
g
′
(
x
)
=
−
g
′
(
x
)
g
2
(
x
)
y=\frac{1}{u},u=g(x),y'=-\frac{1}{u^2}g'(x)=-\frac{g'(x)}{g^2(x)}
y=u1,u=g(x),y′=−u21g′(x)=−g2(x)g′(x)
(2)
y
=
f
(
x
)
,
x
=
f
−
1
(
y
)
,
f
−
1
(
f
(
x
)
)
=
x
y=f(x),x=f^{-1}(y),f^{-1}(f(x))=x
y=f(x),x=f−1(y),f−1(f(x))=x
等式
f
−
1
(
f
(
x
)
)
=
x
f^{-1}(f(x))=x
f−1(f(x))=x两边对
x
x
x求导得
1
=
(
f
−
1
(
y
)
)
′
f
′
(
x
)
1=(f^{-1}(y))'f'(x)
1=(f−1(y))′f′(x),所以
f
−
1
(
y
)
)
′
=
1
f
′
(
x
)
f^{-1}(y))'=\frac{1}{f'(x)}
f−1(y))′=f′(x)1
4.4.7 函数的参数表示(参数方程)求导
{
x
=
φ
(
t
)
,
y
=
ψ
(
t
)
,
α
⩽
t
⩽
β
\left\{\begin{array}{l} x=\varphi(t), \\ y=\psi(t), \end{array} \quad \alpha \leqslant t \leqslant \beta\right.
{x=φ(t),y=ψ(t),α⩽t⩽β且
φ
,
ψ
\varphi,\psi
φ,ψ都可导,
φ
\varphi
φ严格单调且
φ
′
(
t
)
≠
0
\varphi'(t)\ne 0
φ′(t)=0
由反函数的可导定理,
t
=
φ
−
1
(
x
)
,
y
=
ψ
(
φ
−
1
(
x
)
)
t=\varphi^{-1}(x),y=\psi(\varphi^{-1}(x))
t=φ−1(x),y=ψ(φ−1(x))
d
y
d
x
=
ψ
′
(
φ
−
1
(
x
)
)
(
φ
−
1
(
x
)
)
′
=
ψ
′
(
φ
−
1
(
x
)
)
φ
′
(
t
)
=
ψ
′
(
t
)
φ
′
(
t
)
\frac{dy}{dx}=\psi'(\varphi^{-1}(x))(\varphi^{-1}(x))'=\frac{\psi'(\varphi^{-1}(x))}{\varphi'(t)}=\frac{\psi'(t)}{\varphi'(t)}
dxdy=ψ′(φ−1(x))(φ−1(x))′=φ′(t)ψ′(φ−1(x))=φ′(t)ψ′(t)
实际上也可以从微分公式(一阶微分形式的不变性)出发推出来
{
d
x
=
φ
′
(
t
)
d
t
,
d
y
=
ψ
′
(
t
)
d
t
,
\left\{\begin{array}{l} dx=\varphi'(t)dt, \\ dy=\psi'(t)dt, \end{array} \right.
{dx=φ′(t)dt,dy=ψ′(t)dt,,即
d
y
d
x
=
ψ
′
(
t
)
φ
′
(
t
)
\frac{dy}{dx}=\frac{\psi'(t)}{\varphi'(t)}
dxdy=φ′(t)ψ′(t)
【例】【旋轮线(摆线)】
{
x
=
t
−
sin
t
,
y
=
1
−
cos
t
,
0
⩽
t
⩽
π
\left\{\begin{array}{l} x=t-\sin t, \\ y=1-\cos t, \end{array} \quad 0 \leqslant t \leqslant \pi\right.
{x=t−sint,y=1−cost,0⩽t⩽π,求
d
y
d
x
\frac{dy}{dx}
dxdy
【解】
d
y
d
x
=
sin
t
1
−
cos
t
\frac{dy}{dx}=\frac{\sin t}{1-\cos t}
dxdy=1−costsint