vector 接口预览
namespace HL
{
template<class T>
class vector
{
//迭代器iterator
typedef T* iterator;
typedef const T* const_iterator;
public:
//默认成员函数
vector();
vector(size_t n, const T& val = T());
vector(int n, const T& val = T());
vector(const vector& v);
template<class InputIterator>
vector(InputIterator first, InputIterator last);
~vector();
vector<T>& operator=(vector v);
//Iterator
iterator& begin();
iterator& end();
const_iterator begin() const;
const_iterator& end() const;
//Capacity
size_t size() const;
size_t capacity() const;
bool empty() const;
void reserve(size_t n);
void resize(size_t n, const T& val = T());
//Modifiers
void push_back(const T& val);
void pop_back();
void insert(iterator pos, const T& val);
template<class InputIterator>
void insert(iterator pos, InputIterator first, InputIterator last);
iterator erase(iterator pos);
void swap(vector<T>& v);
//Element access:
T& operator[](size_t i);
const T& operator[](size_t i) const;
private:
iterator start;
iterator finish;
iterator end_of_storage;
};
};
vector模拟实现
vector成员变量
vector成员变量,和顺序表的成员变量有所不同,不再是指针、size和capacity了,而是迭代器 start、finish和end_of_storage。
start指向起始位置、finish指向最后一个数据的下一个位置(表示数据的末尾)、end_of_storage指向这一块空间的最后。
默认成员函数
构造函数
1、无参构造
无参构造,就是默认构造函数,将成员变量都初始化成nullptr。
vector()
:start(nullptr)
,finish(nullptr)
,end_of_storage(nullptr)
{}
2、构造并初始化成n个val值
理论上,我们只需要写一个函数vector(size_t n, const T& val = T());即可,但是如果两个参数都是int类型,(即vector v(5,1);)编译器在编译时,认为T已经实例化成了int,对于两个int类型,编译器就会选择更为匹配的模版
template vector(InputIterator first, InputIterator last);
所以这里写一个vector(int n, const T& val = T()); 让上面这种情况匹配这个函数。
vector(size_t n, const T& val = T())
{
start = new T[n];
for (size_t i = 0; i < n; i++)
{
start[i] = val;
}
end_of_storage = finish = start + n;
}
vector(int n, const T& val = T())
{
start = new T[n];
for (int i = 0; i < n; i++)
{
start[i] = val;
}
end_of_storage = finish = start + n;
}
3、使用一段迭代器区间进行初始化
使用迭代器区间进行初始化,这里不一定是vector的迭代器,所以写成模板。
template<class InputIterator>
vector(InputIterator first, InputIterator last)
{
size_t sz = last - first;
start = new T[sz];
finish = start;
while (first != last)
{
*finish = *first;
++finish;
++first;
}
end_of_storage = start + sz;
}
4、拷贝构造
这里要注意,需要深拷贝,而不是浅拷贝。
vector(const vector& v)
{
size_t sz = v.size();
size_t cp = v.capacity();
start = new T[sz];
for (int i = 0; i < sz; i++)
{
start[i] = v[i];
}
finish = start + sz;
end_of_storage = start + cp;
}
析构函数
析构函数比较简单,释放动态开辟的空间即可。
~vector()
{
if (start)
delete[] start;
start = finish = end_of_storage = nullptr;
}
赋值运算符重载
赋值运算符重载,这个编译器自动生成的是浅拷贝,我们需要写一个深拷贝的。
这里有多种写法,首先就是传统写法,我们自己释放、开辟空间再拷贝数据
vector<T>& operator=(const vector& v)
{
if (start)
delete[] start;
size_t sz = v.size();
start = new T[sz];
for (int i = 0; i < sz; i++)
{
start[i] = v[i];
}
finish = end_of_storage = start + sz;
}
还有现代写法,我们这里传参不使用引用,而使用传值传参;这样生成的形参对象再与我们的this(对象)进行交换;这样形参出了作用域就自动调用析构函数,不用我们去处理了。(这个需要先实现交换函数)
vector<T>& operator=(vector v)
{
swap(v);
return *this;
}
注意事项: 在赋值的过程中没有使用memcpy函数,因为这个函数只是将数值拷贝过去(浅拷贝);
如果我们vector 示例化是vector 这样的自定义类型,使用浅拷贝就可能会出现问题;所以这里采用一个一个进行赋值操作,这样就会去调用自定义类型的赋值运算符重载;而不只是简单的浅拷贝了。
iterator 迭代器
vector 的迭代器这里实现的是原生指针;迭代器相关函数:begin()、end()这些都比较简单就不过多描述了。
//迭代器iterator
typedef T* iterator;
typedef const T* const_iterator;
iterator& begin()
{
return start;
}
iterator& end()
{
return finish;
}
const_iterator begin() const
{
return start;
}
const_iterator& end() const
{
return finish;
}
Capacity
capacity容量相关的函数,主要在于调整空间大小和设置内容。
size、capacity、empty
size_t size() const
{
return finish - start;
}
size_t capacity() const
{
end_of_storage - start;
}
bool empty() const
{
return start == finish;
}
reserve
reserve,调整空间大小;即扩容。
void reserve(size_t n)
{
if (n > capacity())
{
iterator tmp = T[n];
size_t sz = size();
for (int i = 0; i < sz; i++)
{
tmp[i] = start[i];
}
if (start)
delete[] start;
start = tmp;
finish = start + sz;
end_of_storage = start + n;
}
}
resize()
void resize(size_t n, const T& val = T())
{
reserve(n);
if (n < size())
{
finish = start + n;
}
else {
for (int i = size(); i < n; i++)
{
start[i] = val;
}
finish = start + n;
}
}
Modifiers
modifiers 增删查改、vector头插头删效率很低,就不提供头插头删接口了。
push_back、pop_back
尾差、尾删,直接在vector最后插入删除数据。
void push_back(const T& val)
{
if (capacity() == size())
{
size_t n = (capacity() == 0) ? 4 : 2 * capacity();
reserve(n);
}
*finish = val;
++finish;
}
void pop_back()
{
assert(start != finish);
--finish;
}
insert
insert函数,在某个位置插入n(可以是1)个数据。或者插入一段迭代器区间的数据。
iterator insert(iterator pos, const T& val)
{
// 空间不够先进行增容
if (finish == end_of_storage)
{
size_t newCapacity = (capacity() == 0) ? 1 : capacity() * 2;
reserve(newCapacity);
// 如果发生了增容,需要重置pos
pos = _start + size();
}
//挪动数据
iterator p = finish;
while (p != pos)
{
*p = *(p - 1);
--p;
}
*pos = val;
finish += 1;
return pos;
}
template<class InputIterator>
void insert(iterator pos, InputIterator first, InputIterator last)
{
//这里如果迭代器不是原生指针或者内存空间不连续就不能进行 - 操作了
size_t sz = last - first;
size_t n = pos - start;
reserve(sz + size());
pos = start + n;
//挪数据
iterator p = finish - 1;
while (p >= pos)
{
*(p + sz) = *p;
--p;
}
//插入数据
for (size_t i = 0; i < sz; i++)
{
pos[i] = first[i];
}
finish += sz;
}
这里,扩容之后还用一个迭代器失效问题,需要重新给pos赋值。
erase
erase就是删除某个位置的数据,直接将后面数据往前移动即可
iterator erase(iterator pos)
{
size_t sz = finish - pos;
for (int i = 0; i < sz; i++)
{
pos[i] = pos[i + 1];
}
finish -= 1;
return pos;
}
clear、swap
void swap(vector<T>& v)
{
std::swap(start, v.start);
std::swap(finish, v.finish);
std::swap(end_of_storage, v.end_of_storage);
}
void clear()
{
finish = start;
}
Element access
operator[ ]
下标访问,直接返回start[i]即可。
T& operator[](size_t i)
{
return start[i];
}
const T& operator[](size_t i) const
{
return start[i];
}
代码总览
#pragma once
#include<iostream>
#include<assert.h>
namespace HL
{
template<class T>
class vector
{
//迭代器iterator
typedef T* iterator;
typedef const T* const_iterator;
public:
//默认成员函数
vector()
:start(nullptr)
,finish(nullptr)
,end_of_storage(nullptr)
{}
vector(size_t n, const T& val = T())
{
start = new T[n];
for (size_t i = 0; i < n; i++)
{
start[i] = val;
}
end_of_storage = finish = start + n;
}
vector(int n, const T& val = T())
{
start = new T[n];
for (int i = 0; i < n; i++)
{
start[i] = val;
}
end_of_storage = finish = start + n;
}
vector(const vector& v)
{
size_t sz = v.size();
size_t cp = v.capacity();
start = new T[sz];
for (int i = 0; i < sz; i++)
{
start[i] = v[i];
}
finish = start + sz;
end_of_storage = start + cp;
}
template<class InputIterator>
vector(InputIterator first, InputIterator last)
{
size_t sz = last - first;
start = new T[sz];
finish = start;
while (first != last)
{
*finish = *first;
++finish;
++first;
}
end_of_storage = start + sz;
}
~vector()
{
if (start)
delete[] start;
start = finish = end_of_storage = nullptr;
}
/*vector<T>& operator=(vector v)
{
swap(v);
return *this;
}*/
vector<T>& operator=(const vector& v)
{
if (start)
delete[] start;
size_t sz = v.size();
start = new T[sz];
for (int i = 0; i < sz; i++)
{
start[i] = v[i];
}
finish = end_of_storage = start + sz;
}
//Iterator
iterator& begin()
{
return start;
}
iterator& end()
{
return finish;
}
const_iterator begin() const
{
return start;
}
const_iterator& end() const
{
return finish;
}
//Capacity
size_t size() const
{
return finish - start;
}
size_t capacity() const
{
end_of_storage - start;
}
bool empty() const
{
return start == finish;
}
void reserve(size_t n)
{
if (n > capacity())
{
iterator tmp = T[n];
size_t sz = size();
for (int i = 0; i < sz; i++)
{
tmp[i] = start[i];
}
if (start)
delete[] start;
start = tmp;
finish = start + sz;
end_of_storage = start + n;
}
}
void resize(size_t n, const T& val = T())
{
reserve(n);
if (n < size())
{
finish = start + n;
}
else {
for (int i = size(); i < n; i++)
{
start[i] = val;
}
finish = start + n;
}
}
//Modifiers
void push_back(const T& val)
{
if (capacity() == size())
{
size_t n = (capacity() == 0) ? 4 : 2 * capacity();
reserve(n);
}
*finish = val;
++finish;
}
void pop_back()
{
assert(start != finish);
--finish;
}
iterator insert(iterator pos, const T& val)
{
// 空间不够先进行增容
if (finish == end_of_storage)
{
size_t newCapacity = (capacity() == 0) ? 1 : capacity() * 2;
reserve(newCapacity);
// 如果发生了增容,需要重置pos
pos = _start + size();
}
//挪动数据
iterator p = finish;
while (p != pos)
{
*p = *(p - 1);
--p;
}
*pos = val;
finish += 1;
return pos;
}
template<class InputIterator>
void insert(iterator pos, InputIterator first, InputIterator last)
{
//这里如果迭代器不是原生指针或者内存空间不连续就不能进行 - 操作了
size_t sz = last - first;
size_t n = pos - start;
reserve(sz + size());
pos = start + n;
//挪数据
iterator p = finish - 1;
while (p >= pos)
{
*(p + sz) = *p;
--p;
}
//插入数据
for (size_t i = 0; i < sz; i++)
{
pos[i] = first[i];
}
finish += sz;
}
iterator erase(iterator pos)
{
size_t sz = finish - pos;
for (int i = 0; i < sz; i++)
{
pos[i] = pos[i + 1];
}
finish -= 1;
return pos;
}
void swap(vector<T>& v)
{
std::swap(start, v.start);
std::swap(finish, v.finish);
std::swap(end_of_storage, v.end_of_storage);
}
void clear()
{
finish = start;
}
//Element access:
T& operator[](size_t i)
{
return start[i];
}
const T& operator[](size_t i) const
{
return start[i];
}
private:
iterator start;
iterator finish;
iterator end_of_storage;
};
};
到这里,vector模拟实现就结束了,希望你能有所收获
感谢各位大佬支持并指出问题
如果本篇内容对你有帮助,可以一键三连支持以下,感谢支持!!!