大数据毕业设计选题推荐-民族服饰数据分析系统-Python数据可视化-Hive-Hadoop-Spark

news2024/11/19 13:25:49

作者主页:IT研究室✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、代码参考
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

民族服饰作为中华文化的重要组成部分,承载着丰富的历史文化内涵和民族特色。随着社会经济的发展和文化传承意识的增强,民族服饰逐渐受到广泛关注。据文化和旅游部统计,2019年我国非物质文化遗产保护项目中,与民族服饰相关的项目达1200余项,占比超过10%。同时,民族服饰产业规模持续扩大,2020年中国民族服饰市场规模达到1500亿元,年增长率保持在15%左右。然而,民族服饰信息的收集、整理和分析仍面临诸多挑战。传统的信息管理方式难以应对海量、多样化的民族服饰数据,无法有效挖掘其中蕴含的文化价值和市场潜力。据调查,超过60%的民族服饰相关企业和研究机构表示缺乏系统化的数据分析工具,影响了产品开发和市场决策的效率。此外,随着互联网技术的发展,民族服饰信息呈现碎片化、分散化趋势,如何有效整合和利用这些数据资源,成为亟待解决的问题。因此,开发一个专门的民族服饰数据分析系统,对于促进民族文化传承和产业发展具有重要意义。

民族服饰数据分析系统的开发和应用价值主要体现在以下几个方面:文化传承与保护方面,该系统通过系统化收集和分析民族服饰数据,为非物质文化遗产的保护和传承提供了数字化支撑,有助于民族文化的长久保存和传播。产业发展与创新方面,系统通过分析服饰特征、市场需求等数据,为民族服饰产业提供设计灵感和市场洞察,推动传统工艺与现代设计的融合创新。教育研究支持方面,该系统为民族学、服装设计等领域的研究者和学生提供了丰富的数据资源和分析工具,促进相关学科的发展和人才培养。旅游文化推广方面,通过可视化展示民族服饰的多样性和特色,系统能够增强公众对民族文化的认知和兴趣,促进文化旅游的发展。决策支持方面,系统通过数据分析为政府部门制定文化保护政策和产业发展规划提供科学依据。综上所述,民族服饰数据分析系统的开发不仅能够促进民族文化的传承与创新,还能推动相关产业的数字化转型,对于提升中国文化软实力和经济发展具有重要的现实意义。

二、开发环境

  • 开发语言:Java/Python
  • 数据库:MySQL
  • 系统架构:B/S
  • 后端:SpringBoot/SSM/Django/Flask
  • 前端:Vue

三、系统界面展示

  • 民族服饰数据分析系统界面展示:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

四、代码参考

  • 项目实战代码参考:
@RestController
@RequestMapping("/api/ethnic-costumes")
public class EthnicCostumeController {

    @Autowired
    private EthnicCostumeService ethnicCostumeService;

    @GetMapping
    public R list(@RequestParam(required = false) String ethnicity,
                  @RequestParam(required = false) String region,
                  @RequestParam(required = false) String category,
                  @RequestParam(defaultValue = "1") Integer page,
                  @RequestParam(defaultValue = "10") Integer size) {
        Page<EthnicCostume> pageParam = new Page<>(page, size);
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        
        queryWrapper.eq(StringUtils.isNotBlank(ethnicity), EthnicCostume::getEthnicity, ethnicity)
                    .like(StringUtils.isNotBlank(region), EthnicCostume::getRegion, region)
                    .eq(StringUtils.isNotBlank(category), EthnicCostume::getCategory, category)
                    .orderByDesc(EthnicCostume::getUpdateTime);
        
        Page<EthnicCostume> result = ethnicCostumeService.page(pageParam, queryWrapper);
        return R.ok().data("items", result.getRecords()).data("total", result.getTotal());
    }

    @PostMapping
    public R save(@RequestBody EthnicCostume ethnicCostume) {
        ethnicCostumeService.save(ethnicCostume);
        return R.ok();
    }

    @PutMapping("/{id}")
    public R update(@PathVariable String id, @RequestBody EthnicCostume ethnicCostume) {
        ethnicCostume.setId(id);
        ethnicCostumeService.updateById(ethnicCostume);
        return R.ok();
    }

    @DeleteMapping("/{id}")
    public R remove(@PathVariable String id) {
        ethnicCostumeService.removeById(id);
        return R.ok();
    }

    @GetMapping("/{id}")
    public R getById(@PathVariable String id) {
        EthnicCostume ethnicCostume = ethnicCostumeService.getById(id);
        return R.ok().data("item", ethnicCostume);
    }

    @GetMapping("/statistics")
    public R getStatistics() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.select(EthnicCostume::getEthnicity, EthnicCostume::getEthnicity.count().as("count"))
                    .groupBy(EthnicCostume::getEthnicity);
        List<Map<String, Object>> ethnicityStats = ethnicCostumeService.listMaps(queryWrapper);

        queryWrapper.clear();
        queryWrapper.select(EthnicCostume::getRegion, EthnicCostume::getRegion.count().as("count"))
                    .groupBy(EthnicCostume::getRegion);
        List<Map<String, Object>> regionStats = ethnicCostumeService.listMaps(queryWrapper);

        queryWrapper.clear();
        queryWrapper.select(EthnicCostume::getCategory, EthnicCostume::getCategory.count().as("count"))
                    .groupBy(EthnicCostume::getCategory);
        List<Map<String, Object>> categoryStats = ethnicCostumeService.listMaps(queryWrapper);

        Map<String, Object> statistics = new HashMap<>();
        statistics.put("ethnicityStats", ethnicityStats);
        statistics.put("regionStats", regionStats);
        statistics.put("categoryStats", categoryStats);

        return R.ok().data("statistics", statistics);
    }

    @GetMapping("/search")
    public R search(@RequestParam String keyword) {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.like(EthnicCostume::getName, keyword)
                    .or().like(EthnicCostume::getDescription, keyword)
                    .or().like(EthnicCostume::getEthnicity, keyword)
                    .or().like(EthnicCostume::getRegion, keyword);
        List<EthnicCostume> results = ethnicCostumeService.list(queryWrapper);
        return R.ok().data("items", results);
    }
}
@RestController
@RequestMapping("/api/visualization")
public class VisualizationController {

    @Autowired
    private EthnicCostumeService ethnicCostumeService;

    @GetMapping("/ethnicity-distribution")
    public R getEthnicityDistribution() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getEthnicity)
                    .select(EthnicCostume::getEthnicity, EthnicCostume::getEthnicity.count().as("count"));
        
        List<Map<String, Object>> distribution = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("ethnicityDistribution", distribution);
    }

    @GetMapping("/region-distribution")
    public R getRegionDistribution() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getRegion)
                    .select(EthnicCostume::getRegion, EthnicCostume::getRegion.count().as("count"));
        
        List<Map<String, Object>> distribution = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("regionDistribution", distribution);
    }

    @GetMapping("/category-distribution")
    public R getCategoryDistribution() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getCategory)
                    .select(EthnicCostume::getCategory, EthnicCostume::getCategory.count().as("count"));
        
        List<Map<String, Object>> distribution = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("categoryDistribution", distribution);
    }

    @GetMapping("/material-usage")
    public R getMaterialUsage() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getMaterial)
                    .select(EthnicCostume::getMaterial, EthnicCostume::getMaterial.count().as("count"))
                    .orderByDesc(EthnicCostume::getMaterial.count());
        
        List<Map<String, Object>> materialUsage = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("materialUsage", materialUsage);
    }

    @GetMapping("/color-palette")
    public R getColorPalette() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getPrimaryColor)
                    .select(EthnicCostume::getPrimaryColor, EthnicCostume::getPrimaryColor.count().as("count"))
                    .orderByDesc(EthnicCostume::getPrimaryColor.count());
        
        List<Map<String, Object>> colorPalette = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("colorPalette", colorPalette);
    }

    @GetMapping("/time-period-analysis")
    public R getTimePeriodAnalysis() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getTimePeriod)
                    .select(EthnicCostume::getTimePeriod, EthnicCostume::getTimePeriod.count().as("count"))
                    .orderByAsc(EthnicCostume::getTimePeriod);
        
        List<Map<String, Object>> timePeriodAnalysis = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("timePeriodAnalysis", timePeriodAnalysis);
    }

    @GetMapping("/pattern-analysis")
    public R getPatternAnalysis() {
        LambdaQueryWrapper<EthnicCostume> queryWrapper = new LambdaQueryWrapper<>();
        queryWrapper.groupBy(EthnicCostume::getPattern)
                    .select(EthnicCostume::getPattern, EthnicCostume::getPattern.count().as("count"))
                    .orderByDesc(EthnicCostume::getPattern.count());
        
        List<Map<String, Object>> patternAnalysis = ethnicCostumeService.listMaps(queryWrapper);
        return R.ok().data("patternAnalysis", patternAnalysis);
    }
}

五、论文参考

  • 计算机毕业设计选题推荐-民族服饰数据分析系统论文参考:
    在这里插入图片描述

六、系统视频

民族服饰数据分析系统项目视频:

大数据毕业设计选题推荐-民族服饰数据分析系统-Python数据可视化-Hive-Hadoop-Spark

结语

大数据毕业设计选题推荐-民族服饰数据分析系统-Python数据可视化-Hive-Hadoop-Spark
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:⬇⬇⬇

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2183782.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DNS with libevent

DNS with libevent: high-level and low-level functionality libevent提供了少量用于解析DNS名字的API&#xff0c;以及用于实现简单DNS服务器的机制。 我们从用于名字查询的高层机制开始介绍&#xff0c;然后介绍底层机制和服务器机制。 Portable blocking name resolution…

八、SPOOLING技术

1.早期脱机技术 外围控制机更高速的设备--磁带 作用:缓解设备与CPU的速度矛盾&#xff0c;实现预输入、缓输出 批处理阶段引入了脱机输入/输出技术(用磁带完成): 引入脱机技术后&#xff0c;缓解了CPU与慢速I/O设备的速度矛盾。另一方面&#xff0c;即使CPU在忙碌&#xff0…

【Windows】在任务管理器中隐藏进程

在此前的一篇&#xff0c;我们已经介绍过了注入Dll 阻止任务管理器结束进程 -- Win 10/11。本篇利用 hook NtQuerySystemInformation 并进行断链的方法实现进程隐身&#xff0c;实测支持 taskmgr.exe 的任意多进程隐身。 任务管理器 代码&#xff1a; // dllmain.cpp : 定义 …

MongoDB微服务部署

一、安装MongoDB 1.在linux中拉去MongoDB镜像文件 docker pull mongo:4.4.18 2. 2.创建数据挂载目录 linux命令创建 命令创建目录: mkdir -p /usr/local/docker/mongodb/data 可以在sshclient工具查看是否创建成功。 进入moogodb目录&#xff0c;给data赋予权限777 cd …

2024-09-04 深入JavaScript高级语法十五——浏览器原理-V8引擎-js执行原理

目录 1、浏览器的工作原理1.1、认识浏览器内核1.2、浏览器渲染过程 2、JS引擎2.1、认识 JavaScript 引擎2.2、浏览器内核和JS引擎的关系2.3、V8引擎的原理2.4、V8引擎的架构2.5、V8执行的细节 3、全局代码的执行过程3.1、初始化全局对象3.2、执行上下文栈&#xff08;调用栈&am…

World of Warcraft [CLASSIC][80][Grandel] Call to Arms: Victory in Wintergrasp

Wintergrasp 冬拥湖 120 VS 120 Victory in Wintergrasp - Quest - 魔兽世界怀旧服WLK3.35数据库_巫妖王之怒80级魔兽数据库_wlk数据库

逆向-下字符串查找的条件断点

为了跟踪console程序在访问某个文件时失败的问题&#xff0c;在内核中下了断点&#xff0c;但是内核中文件部分调用太频繁了&#xff0c;无法等到自己的文件。所以最好还是根据条件来下断点。 程序如下 想要在FileName是指定文件时停下来&#xff0c;例如FileName是c:\temp\f…

「轻盈」之旅:OOM故障重现与解决

前期准备 本项目均采用 VisualVM 2.1.10 进行dump文件的分析。JDK1.8及之前所在目录的bin目录下有自带的VisualVM&#xff0c;JDK1.8以后需要自行手动安装下载。 下载地址&#xff1a;https://visualvm.github.io/download.html IDEA插件配置&#xff1a;在Plugins里搜索visual…

2-109 基于matlab-GUI的BP神经网络

基于matlab-GUI的BP神经网络&#xff0c;10种不同分布的数据样本&#xff0c;9种不同的激活函数&#xff0c;可更改升级网络结构参数&#xff0c;对比各种方法参数下的训练测试效果&#xff0c;实时显示预测过程。程序已调通&#xff0c;可直接运行。 下载源程序请点链接&…

【简介Sentinel-1】

Sentinel-1是欧洲航天局哥白尼计划&#xff08;GMES&#xff09;中的地球观测卫星&#xff0c;由Sentinel-1A和Sentinel-1B两颗卫星组成。以下是对Sentinel-1的详细介绍&#xff1a; 一、基本信息 卫星名称&#xff1a;Sentinel-1 所属计划&#xff1a;欧洲航天局哥白尼计划…

【CSS】兼容处理

兼容前缀兼容查询 由于不同浏览器对CSS标准的支持程度不同&#xff0c;可能会导致在不同浏览器中出现样式差异。为了解决这个问题&#xff0c;需要采取一些措施来提高CSS的兼容性 兼容前缀 兼容前缀针对的浏览器-webkit-WebKit 内核浏览器&#xff0c;如&#xff1a;Safari 、…

.NET Core 集成 MiniProfiler性能分析工具

前言&#xff1a; 在日常开发中&#xff0c;应用程序的性能是我们需要关注的一个重点问题。当然我们有很多工具来分析程序性能&#xff1a;如&#xff1a;Zipkin等&#xff1b;但这些过于复杂&#xff0c;需要单独搭建。 MiniProfiler就是一款简单&#xff0c;但功能强大的应用…

进击J9:Inception v3算法实战与解析

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 一、实验目的&#xff1a; 了解并学习InceptionV3相对于InceptionV1改进了哪些地方&#xff08;重点&#xff09;使用Inception v3完成天气识别案例 二、实验环…

Android 12.0 关于定制自适应AdaptiveIconDrawable类型的动态时钟图标的功能实现系列一

1.前言 在12.0的系统rom定制化开发中,在关于定制动态时钟图标中,原系统是不支持动态时钟图标的功能,所以就需要从新 定制动态时钟图标关于自适应AdaptiveIconDrawable类型的样式,就是可以支持当改变系统图标样式变化时,动态时钟 图标的背景图形也跟着改变,所以接下来就来…

OpenFeign微服务部署

一.开启nacos 和redis 1.查看nacos和redis是否启动 docker ps2.查看是否安装nacos和redis docker ps -a3.启动nacos和redis docker start nacos docker start redis-6379 docker ps 二.使用SpringSession共享例子 这里的两个例子在我的一个博客有创建过程&#xff0c…

通信工程学习:什么是LTE长期演进

LTE:长期演进 LTE(Long Term Evolution,长期演进)是由3GPP(The 3rd Generation Partnership Project,第三代合作伙伴计划)组织制定的UMTS(Universal Mobile Telecommunications System,通用移动通信系统)技术标准的长期演进。以下是对LTE的详细解释: 一、定…

音乐制作软件FL Studio 24.1.1.4285 中文完整版新功能介绍及如何安装激活FL Studio 24

FL Studio 24.1.1.4285 中文完整版又被国内网友称之为水果音乐制作软件24&#xff0c;是Image-Line公司成立26周年而发布的一个版本&#xff0c;是目前互联网上最优秀的完整的软件音乐制作环境或数字音频工作站&#xff0c;包含了编排&#xff0c;录制&#xff0c;编辑&#xf…

笔墨歌盛世 丹青绘匠心,艺术赋能“百千万工程”

9月30日上午&#xff0c;乡村有“艺”思——2024 年三乡镇乡村文化艺术周启动仪式暨“崛起的力量”余镇河深中通道主题美术作品展开幕仪式在中山市三乡镇古鹤村成荣美术馆举行。 中山市文联党组成员、专职副主席卢曙光&#xff0c;三乡镇党委委员艾立强&#xff0c;中山市文化馆…

leetcode每日一题day21(24.10.1)——最低票价

看到题目&#xff0c;最低消费又有各种的方案&#xff0c;与结合往期每日一题很就没出动态规划&#xff0c;就感觉这题很像动态规划。 思路:对于第X天&#xff0c;买票有三种方案&#xff0c;即从&#xff0c;X-1天买一天的票&#xff0c;X-7买7天的票&#xff0c;X-30买三十天…

iSTFT 完美重构的条件详解

目录 引言1. 短时傅里叶变换&#xff08;STFT&#xff09;与逆变换&#xff08;iSTFT&#xff09;概述2. 完美重构的条件3. 数学推导4. 实现要点5. 示例代码6. 总结 引言 在数字信号处理领域&#xff0c;短时傅里叶变换&#xff08;Short-Time Fourier Transform&#xff0c;简…