GeoHash原理介绍以及在redis中的应用-CSDN博客 这边文章中介绍了GeoHash编码原理以及它的一个应用——利用GeoHash编码可以建立一个索引,从而实现快速的空间搜索。今天,我们介绍一个常见的数据结构Kd-Tree,利用它也可以快速实现多位数据的搜索(包括空间搜索)。
1、Kd-Tree基础知识
Kd-树是K-dimension tree的缩写,1975年,来自斯坦福大学的Jon Louis Bentley在ACM杂志上发表的一篇论文:Multidimensional Binary Search Trees Used for Associative Searching 中正式提出和阐述的了如下图形式的把空间划分为多个部分的k-d树。
1.1)KDTree介绍
在介绍Kd-tree的相关算法前,我们先回顾一下二叉查找树(Binary Search Tree,BST)的相关概念和算法。BST是具有如下性质的二叉树:
- 若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉排序树;
例如,图1中是一棵二叉查找树,其满足BST的性质。
将一个1维数据集用一棵BST树存储后,当我们想要查询某个数据是否位于该数据集合中时,只需要将查询数据与结点值进行比较然后选择对应的子树继续往下查找即可,查找的平均时间复杂度为:O(logN),最坏的情况下是O(N)。
如果我们要处理的对象集合是一个K维空间中的数据集,那么是否也可以构建一棵类似于1维空间中的二叉查找树呢?答案是肯定的,只不过推广到K维空间后,创建二叉树和查询二叉树的算法会有一些相应的变化(后面会介绍到两者的区别),这就是下面我们要介绍的Kd-tree算法。
Kd-tree是对数据点在k维空间(如二维(x,y),三维(x,y,z),k维(x1,y,z..))中划分的一种数据结构,主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索)。一般来说,Kd-tree是BST的一种变体。
1.2)创建Kd-tree的一些思考
对于Kd-tree这样一棵二叉树,我们首先需要确定怎样划分左子树和右子树,即一个K维数据是依据什么被划分到左子树或右子树的。
在构造1维BST树时,一个1维数据根据其与树的根结点和中间结点进行大小比较的结果来决定是划分到左子树还是右子树,同理,我们也可以按照这样的方式,将一个K维数据与Kd-tree的根结点和中间结点进行比较,只不过不是对K维数据进行整体的比较,而是选择某一个维度Di,然后比较两个K维数在该维度Di上的大小关系,即每次选择一个维度Di来对K维数据进行划分,相当于用一个垂直于该维度Di的超平面将K维数据空间一分为二,平面一边的所有K维数据在Di维度上的值小于平面另一边的所有K维数据对应维度上的值。也就是说,我们每选择一个维度进行如上的划分,就会将K维数据空间划分为两个部分,如果我们继续分别对这两个子K维空间进行如上的划分,又会得到新的子空间,对新的子空间又继续划分,重复以上过程直到每个子空间都不能再划分为止。以上就是构造Kd-Tree的过程,上述过程中涉及到两个重要的问题:
- 每次对子空间的划分时,怎样确定在哪个维度上进行划分;
- 在某个维度上进行划分时,怎样确保在这一维度上的划分得到的两个子集合的数量尽量相等,即左子树和右子树中的结点个数尽量相等。
1)问题1: 每次对子空间的划分时,怎样确定在哪个维度上进行划分?
最简单的方法就是轮着来,即如果这次选择了在第i维上进行数据划分,那下一次就在第j(j≠i)维上进行划分,例如:j = (i mod k) + 1。想象一下我们切豆腐时,先是竖着切一刀,切成两半后,再横着来一刀,就得到了很小的方块豆腐。
可是“轮着来”的方法是否可以很好地解决问题呢?再次想象一下,我们现在要切的是一根木条,按照“轮着来”的方法先是竖着切一刀,木条一分为二,干净利落,接下来就是再横着切一刀,这个时候就有点考验刀法了。因此,如果K维数据的分布像上面的豆腐一样,“轮着来”的切分方法是可以奏效,但是如果K维度上数据的分布像木条一样,“轮着来”就不好用了。因此,还需要想想其他的切法。
如果一个K维数据集合的分布像木条一样,那就是说明这K维数据在木条较长方向代表的维度上,这些数据的分布散得比较开,数学上来说,就是这些数据在该维度上的方差(invariance)比较大,换句话说,正因为这些数据在该维度上分散的比较开,我们就更容易在这个维度上将它们划分开,因此,这就引出了我们选择维度的另一种方法:最大方差法(max invarince),即每次我们选择维度进行划分时,都选择具有最大方差维度。
说明:从方差大的维度开始切分可以取得很好的切分效果及平衡性。
2)问题2:在某个维度上进行划分时,怎样确保在这一维度上的划分得到的两个子集合的数量尽量相等,即左子树和右子树中的结点个数尽量相等?
假设当前我们按照最大方差法选择了在维度i上进行K维数据集S的划分,此时我们需要在维度i上将K维数据集合S划分为两个子集合A和B,子集合A中的数据在维度i上的值都小于子集合B中。首先考虑最简单的划分法,即选择第一个数作为比较对象(即划分轴,pivot),S中剩余的其他所有K维数据都跟该pivot在维度i上进行比较,如果小于pivot则划A集合,大于则划入B集合。把A集合和B集合分别看做是左子树和右子树,那么我们在构造一个二叉树的时候,当然是希望它是一棵尽量平衡的树,即左右子树中的结点个数相差不大。而A集合和B集合中数据的个数显然跟pivot值有关,因为它们是跟pivot比较后才被划分到相应的集合中去的。好了,现在的问题就是确定pivot了。给定一个数组,怎样才能得到两个子数组,这两个数组包含的元素个数差不多且其中一个子数组中的元素值都小于另一个子数组呢?方法很简单,找到数组中的中值(即中位数,median),然后将数组中所有元素与中值进行比较,就可以得到上述两个子数组。同样,在维度i上进行划分时,pivot就选择该维度i上所有数据的中值,这样得到的两个子集合数据个数就基本相同了。
解决了上面两个重要的问题后,就得到了Kd-Tree的构造算法了。