高级java每日一道面试题-2024年9月30日-算法篇-LRU是什么?如何实现?

news2024/9/30 21:33:08

如果有遗漏,评论区告诉我进行补充

面试官: LRU是什么?如何实现?

我回答:

LRU(Least Recently Used)是一种常用的缓存淘汰策略,用于在缓存满时决定哪些数据应该被移除。LRU算法的基本思想是:当缓存达到其容量上限时,最近最少使用的数据会被优先淘汰。这种策略假设最近使用的数据在未来也会被频繁访问。

LRU算法概述

LRU算法是一种缓存淘汰策略,其核心思想是:如果一个数据在最近一段时间没有被访问到,那么在未来被访问的可能性也很小。因此,当缓存空间已满时,LRU算法会选择最近最少使用的数据进行淘汰。

LRU算法广泛应用于操作系统中的页面置换、数据库查询优化、Web缓存等场景,是最大化缓存命中率的有效手段之一。

LRU算法的实现原理

LRU的实现

LRU的实现通常需要一个数据结构来同时支持快速查找和插入/删除操作。常用的数据结构是哈希表(HashMap)和双向链表(Doubly Linked List)的结合体。

数据结构
  • 哈希表:用于快速查找缓存中的元素。
  • 双向链表:用于维护元素的访问顺序,最近访问的元素放在链表头部,最久未访问的元素放在链表尾部。
基本操作
  1. 插入

    • 如果新插入的键已经在缓存中,则更新其值,并将其移动到链表头部。
    • 如果新插入的键不在缓存中,且缓存已满,则移除链表尾部的元素,并将新元素插入到链表头部。
  2. 访问

    • 如果访问的键在缓存中,则将其移动到链表头部。
    • 如果访问的键不在缓存中,则返回null或其他默认值。
  3. 删除

    • 如果删除的键在缓存中,则从链表和哈希表中移除该元素。
    • 如果删除的键不在缓存中,则不进行任何操作。

LRU算法的实现需要满足以下几个要求:

  1. 查找快:能够迅速找到缓存中的数据。
  2. 插入快:能够快速地将新数据插入到缓存中。
  3. 删除快:能够高效地删除缓存中的数据。
  4. 维护顺序:需要维护数据的访问顺序,以便在缓存空间不足时淘汰最近最少使用的数据。

代码实现

下面是一个使用Java实现LRU缓存的示例:

import java.util.HashMap;
import java.util.Map;

public class LRUCache<K, V> {
    private final int capacity;
    private final Map<K, Node<K, V>> map;
    private final DoublyLinkedList<K, V> list;

    public LRUCache(int capacity) {
        this.capacity = capacity;
        this.map = new HashMap<>();
        this.list = new DoublyLinkedList<>();
    }

    public V get(K key) {
        if (map.containsKey(key)) {
            Node<K, V> node = map.get(key);
            list.moveToHead(node); // 将访问的节点移到链表头部
            return node.value;
        }
        return null;
    }

    public void put(K key, V value) {
        if (map.containsKey(key)) {
            Node<K, V> node = map.get(key);
            node.value = value; // 更新节点的值
            list.moveToHead(node); // 将更新的节点移到链表头部
        } else {
            if (map.size() >= capacity) {
                Node<K, V> removedNode = list.removeTail(); // 移除链表尾部的节点
                map.remove(removedNode.key); // 从哈希表中移除对应的键
            }
            Node<K, V> newNode = new Node<>(key, value);
            list.addHead(newNode); // 将新节点添加到链表头部
            map.put(key, newNode); // 在哈希表中添加新的键值对
        }
    }

    private static class Node<K, V> {
        K key;
        V value;
        Node<K, V> prev;
        Node<K, V> next;

        Node(K key, V value) {
            this.key = key;
            this.value = value;
        }
    }

    private static class DoublyLinkedList<K, V> {
        private Node<K, V> head;
        private Node<K, V> tail;

        public void addHead(Node<K, V> node) {
            if (head == null) {
                head = tail = node;
            } else {
                node.next = head;
                head.prev = node;
                head = node;
            }
        }

        public void moveToHead(Node<K, V> node) {
            if (node == head) return; // 如果节点已经是头结点,则无需移动
            removeNode(node);
            addHead(node);
        }

        public Node<K, V> removeTail() {
            if (tail == null) return null;
            Node<K, V> node = tail;
            removeNode(tail);
            return node;
        }

        private void removeNode(Node<K, V> node) {
            if (node.prev != null) {
                node.prev.next = node.next;
            } else {
                head = node.next;
            }
            if (node.next != null) {
                node.next.prev = node.prev;
            } else {
                tail = node.prev;
            }
            node.prev = null;
            node.next = null;
        }
    }

    public static void main(String[] args) {
        LRUCache<Integer, String> cache = new LRUCache<>(2);
        cache.put(1, "one");
        cache.put(2, "two");
        System.out.println(cache.get(1)); // 输出: one
        cache.put(3, "three"); // 移除最近最少使用的 2
        System.out.println(cache.get(2)); // 输出: null
        cache.put(4, "four"); // 移除最近最少使用的 1
        System.out.println(cache.get(1)); // 输出: null
        System.out.println(cache.get(3)); // 输出: three
        System.out.println(cache.get(4)); // 输出: four
    }
}

解释

  1. LRUCache 类

    • capacity:缓存的最大容量。
    • map:哈希表,用于存储键和对应的节点。
    • list:双向链表,用于维护节点的访问顺序。
  2. get 方法

    • 如果键存在于缓存中,将对应的节点移动到链表头部,并返回其值。
    • 如果键不存在于缓存中,返回null。
  3. put 方法

    • 如果键已经存在于缓存中,更新其值并将节点移动到链表头部。
    • 如果键不存在于缓存中且缓存已满,移除链表尾部的节点,并将新节点添加到链表头部。
    • 如果键不存在于缓存中且缓存未满,直接将新节点添加到链表头部。
  4. Node 类

    • 表示双向链表中的一个节点,包含键、值以及前驱和后继指针。
  5. DoublyLinkedList 类

    • 实现了双向链表的基本操作,包括添加节点到头部、移动节点到头部、移除节点等。

LRU算法的性能分析

LRU算法的性能主要取决于哈希表和双向链表的操作效率。由于哈希表的查找、插入和删除操作的时间复杂度都是O(1),双向链表的插入、删除和移动操作的时间复杂度也都是O(1)(在已知节点位置的情况下),因此LRU算法的整体时间复杂度可以认为是O(1)。

然而,需要注意的是,在实际应用中,由于哈希表的冲突和链表节点的移动等操作,LRU算法的实际性能可能会受到一定影响。此外,当缓存数据量很大时,哈希表和链表的内存开销也需要考虑。

LRU算法的改进和优化

针对LRU算法的不足,有一些改进和优化方法:

  1. LRU-K算法:将“最近使用过1次”的判断标准扩展为“最近使用过K次”,以减少缓存污染问题。LRU-K算法需要多维护一个队列来记录所有缓存数据被访问的历史。
  2. Two Queues(2Q)算法:使用两个缓存队列,一个是FIFO队列,一个是LRU队列。新数据先放入FIFO队列,当数据再次被访问时,将其移到LRU队列。这种算法结合了FIFO和LRU的优点。
  3. MQ算法:根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级。新数据放入最低优先级的队列,当数据的访问次数达到一定次数时,将其提升到更高优先级的队列。

总结

综上所述,LRU算法是一种高效且广泛应用的缓存淘汰策略。在Java中,可以通过使用哈希表和双向链表的组合来实现LRU缓存。同时,也需要根据实际应用场景和需求对LRU算法进行改进和优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2180764.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

点餐小程序实战教程14点餐功能

目录 1 功能分析2 初始化菜品的数量3 加入购物车4 显示购物车5 最终的效果总结 上一篇我们讲解了如果通过扫码实现餐桌信息显示&#xff0c;本篇我们介绍一下点餐的功能。 1 功能分析 点餐的话一般我们是在菜品点击号或者-号来加入购物车&#xff0c;加入购物车之后还可以修改…

APP 安全测试项总结

一、安装包测试 1.1、关于反编译 目的是为了保护公司的知识产权和安全方面的考虑等&#xff0c;一些程序开发人员会在源码中硬编码一些敏感信息&#xff0c;如密码。而且若程序内部一些设计欠佳的逻辑&#xff0c;也可能隐含漏洞&#xff0c;一旦源码泄漏&#xff0c;安全隐患…

Temporal Dynamic Quantization for Diffusion Models阅读

文章目录 AbstractIntroductionBackgrounds and Related Works2.1 扩散模型2.2 量化2.3 量化感知训练和训练后量化 TemporalDynamic Quantization3.1 量化方法3.2 扩散模型量化的挑战3.3 TDQ模块的实现3.4 工程细节时间步的频率编码TDQ模块的初始化 Experimental SetupResults5…

#git 问题failed to resolve head as a valid ref

问题如下&#xff1a; 解决方法&#xff1a; 1、运行 git fsck --full 可以查看具体error信息&#xff0c;一般都是head索引问题 2、.git\refs\heads\xxx&#xff08;当前分支&#xff09;txt编辑器打开显示乱码&#xff0c;而不是hash编码 3、在.git\logs\refs\heads\xxx&a…

如何评价 Python 语言的运行速度

Python 作为一门编程语言&#xff0c;其运行速度一直是业界讨论的焦点。它的简洁语法和广泛的应用使得它在开发过程中非常高效&#xff0c;然而&#xff0c;运行速度与一些更底层的编程语言相比存在一定的劣势。这是否是由于 Python 语法的简洁性所带来的代价&#xff1f;我们可…

心觉:自我暗示语“正确姿势”的科学解释

Hi&#xff0c;我是心觉&#xff0c;与你一起玩转潜意识、脑波音乐和吸引力法则&#xff0c;轻松掌控自己的人生&#xff01; 挑战每日一省写作185/1000天 “如何重塑高效学习的潜意识”这个系列文章其实昨天已经写完了 在写这个系列文章的时候&#xff0c;我突然有一个关于…

宠物空气净化器该怎么选?希喂、美的、有哈这三款有推荐的吗?

终于要到国庆了&#xff0c;这可是打工人除春节外最长的假期&#xff01;在外上班后&#xff0c;回家的次数越来越少了&#xff0c;这次国庆肯定要回去陪陪父母。这票是真难买啊&#xff0c;候补了我一个多星期才买到。本来以为最困难的问题已经解决了&#xff0c;又想到我家猫…

Mamba以及我们看的第一篇MambaOcc

0. 简介 深度学习架构有很多&#xff0c;但近些年最成功的莫过于 Transformer&#xff0c;其已经在多个应用领域确立了自己的主导地位。如此成功的一大关键推动力是注意力机制&#xff0c;这能让基于 Transformer 的模型关注与输入序列相关的部分&#xff0c;实现更好的上下文…

动手测试:CPU的L1~L3级缓存和内存的读取速度测试

引言 在许多文章中指出了这些缓存的架构&#xff0c;速度差异等。纸上得来终觉浅&#xff0c;今天想实际写代码简单测试一下。 背景 现代计算机系统中&#xff0c;CPU缓存&#xff08;L1、L2、L3&#xff09;和主内存&#xff08;RAM&#xff09;之间的读取速度有着显著的差…

数据结构之链表(2),双向链表

目录 前言 一、链表的分类详细 二、双向链表 三、双向链表的实现 四、List.c文件的完整代码 五、使用演示 总结 前言 接着上一篇单链表来详细说说链表中什么是带头和不带头&#xff0c;“哨兵位”是什么&#xff0c;什么是单向什么是双向&#xff0c;什么是循环和不循环。然后实…

U盘恢复数据工具:让数据失而复得的魔法

优盘里数据丢失无疑会给我们的工作和生活带来诸多不便。幸运的是&#xff0c;优盘数据恢复软件应运而生&#xff0c;它们如同数据的守护者&#xff0c;为我们提供了找回丢失数据的希望。这次我们就一同来探讨u盘恢复数据有什么方法吧。 1.福昕恢复数据 链接直达&#xff1a;h…

AutoSar 通信服务架构,CAN通信诊断详解

文章目录 Com&#xff08;通信服务模块&#xff09;PDU的定义和结构PDU的分类IPDU Mux 模块PDU R 模块&#xff08;路由&#xff09;Bus TP 模块BUS InterfaceCanIf模块LinIf模块 发送数据示例&#xff08;CAN报文&#xff09;接收数据示例&#xff08;CAN报文&#xff09;通信…

监控告警功能详细介绍及操作演示:运维团队的智能保障

在当今这个信息化高速发展的时代&#xff0c;运维团队面临着前所未有的挑战。为了确保系统的稳定性和高效运维&#xff0c;监控告警功能成为了运维团队不可或缺的得力助手。本文将详细介绍我们的监控告警功能&#xff0c;并结合实际操作页面进行演示&#xff0c;帮助运维团队更…

Docker入门指南:快速学习Docker的基本操作

为什么需要Docker 有时我们在本地开发好程序并成功运行之后&#xff0c;却在服务器上运行不起来&#xff0c;通过观察日志通常会发现&#xff0c;哦原来是这个库没安装&#xff0c;于是我们就需要先安装需要用到的库&#xff0c;然后再启动服务你可能还会发现用到的数据库信息…

《Linux从小白到高手》理论篇(六):Linux软件安装一篇通

List item 本篇介绍Linux软件安装相关的操作命令&#xff0c;看完本文&#xff0c;有关Linux软件安装相关操作的常用命令你就掌握了99%了。 Linux软件安装 RPM RPM软件的安装、删除、更新只有root权限才能使用&#xff1b;查询功能任何用户都可以操作&#xff1b;如果普通用…

真正的Open AI ——LLaMA颠覆开源大模型

1. LLaMA 简介 LLaMA&#xff08;Large Language Model Meta AI&#xff09;是由Meta&#xff08;原Facebook&#xff09;推出的一个大型语言模型系列&#xff0c;旨在通过更小的模型规模和更少的计算资源&#xff0c;实现与其他主流语言模型&#xff08;如GPT&#xff09;相媲…

spring简短注入

新建bean 创建set方法 jpackage com.dependency.spring6.bean;import org.slf4j.Logger; import org.slf4j.LoggerFactory;public class User {private static final Logger LOGGER LoggerFactory.getLogger(User.class);private String username;private String password;pr…

RPA跨流程复用元素技巧|实在RPA研究

为什么要跨流程复用元素 在 RPA 操作中&#xff0c;元素至关重要&#xff0c;因为自动化的本质就是模拟人类对元素的操作。基本上&#xff0c;每个流程都会包含若干个元素。对于同时维护多个流程的用户而言&#xff0c;相似的流程包&#xff0c;甚至是同一个元素。例如电商用户…

Solidworks斜接法兰快速绘制钣金箱体

Solidworks斜接法兰快速绘制钣金箱体 Chapter1 Solidworks斜接法兰快速绘制钣金箱体 Chapter1 Solidworks斜接法兰快速绘制钣金箱体 0.5mm间距为钣金焊接的预留焊缝。

Linux云计算 |【第四阶段】RDBMS1-DAY6

主要内容&#xff1a; MySQL索引&#xff08;索引分类、创建索引&#xff09;、用户及授权&#xff08;创建用户并授权、查看授权、撤销授权、授权库mysql&#xff09;、root密码恢复、备份、使用mysqldump进行逻辑备份、Percona 一、MySQL索引 1、基本概念 MySQL 索引(Inde…