动手学深度学习(李沐)PyTorch 第 5 章 深度学习计算

news2025/1/6 19:38:58

5.1 层和块

为了实现这些复杂的网络,我们引入了神经网络块的概念。 块(block)可以描述单个层、由多个层组成的组件或整个模型本身。 使用块进行抽象的一个好处是可以将一些块组合成更大的组件, 这一过程通常是递归的,如 图5.1.1所示。 通过定义代码来按需生成任意复杂度的块, 我们可以通过简洁的代码实现复杂的神经网络。

从编程的角度来看,块由类(class)表示。 它的任何子类都必须定义一个将其输入转换为输出的前向传播函数, 并且必须存储任何必需的参数。 注意,有些块不需要任何参数。 最后,为了计算梯度,块必须具有反向传播函数。 在定义我们自己的块时,由于自动微分(在 2.5节 中引入) 提供了一些后端实现,我们只需要考虑前向传播函数和必需的参数。

在这里插入图片描述

在构造自定义块之前,我们先回顾一下多层感知机 ( 4.3节 )的代码。 下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。

import torch
from torch import nn
from torch.nn import functional as F

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))

X = torch.rand(2, 20)
net(X)

在这里插入图片描述
在这个例子中,我们通过实例化nn.Sequential来构建我们的模型, 层的执行顺序是作为参数传递的。 简而言之,nn.Sequential定义了一种特殊的Module, 即在PyTorch中表示一个块的类, 它维护了一个由Module组成的有序列表。 注意,两个全连接层都是Linear类的实例, Linear类本身就是Module的子类。 另外,到目前为止,我们一直在通过net(X)调用我们的模型来获得模型的输出。 这实际上是net.call(X)的简写。 这个前向传播函数非常简单: 它将列表中的每个块连接在一起,将每个块的输出作为下一个块的输入。

自定义块

要想直观地了解块是如何工作的,最简单的方法就是自己实现一个。 在实现我们自定义块之前,我们简要总结一下每个块必须提供的基本功能。

  1. 将输入数据作为其前向传播函数的参数。
  2. 通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。
  3. 计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。
  4. 存储和访问前向传播计算所需的参数。
  5. 根据需要初始化模型参数。

在下面的代码片段中,我们从零开始编写一个块。 它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。 注意,下面的MLP类继承了表示块的类。 我们的实现只需要提供我们自己的构造函数(Python中的__init__函数)和前向传播函数

class MLP(nn.Module):
    # 用模型参数声明层。这里,我们声明两个全连接的层
    def __init__(self):
        # 调用MLP的父类Module的构造函数来执行必要的初始化。
        # 这样,在类实例化时也可以指定其他函数参数,例如模型参数params(稍后将介绍)
        super().__init__()
        self.hidden = nn.Linear(20, 256)  # 隐藏层
        self.out = nn.Linear(256, 10)  # 输出层

    # 定义模型的前向传播,即如何根据输入X返回所需的模型输出
    def forward(self, X):
        # 注意,这里我们使用ReLU的函数版本,其在nn.functional模块中定义。
        return self.out(F.relu(self.hidden(X)))

nn.ReLU()是构造了一个ReLU对象,并不是函数调用,而F.ReLU()是函数调用

注意,除非我们实现一个新的运算符, 否则我们不必担心反向传播函数或参数初始化, 系统将自动生成这些。

我们来试一下这个函数:

net = MLP()
net(X)

在这里插入图片描述
块的一个主要优点是它的多功能性。 我们可以子类化块以创建层(如全连接层的类)、 整个模型(如上面的MLP类)或具有中等复杂度的各种组件。 我们在接下来的章节中充分利用了这种多功能性, 比如在处理卷积神经网络时。

顺序块

现在我们可以更仔细地看看Sequential类是如何工作的, 回想一下Sequential的设计是为了把其他模块串起来。 为了构建我们自己的简化的MySequential, 我们只需要定义两个关键函数:

  1. 一种将块逐个追加到列表中的函数;
  2. 一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。

下面的MySequential类提供了与默认Sequential类相同的功能。

class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for idx, module in enumerate(args):
            # 这里,module是Module子类的一个实例。我们把它保存在'Module'类的成员
            # 变量_modules中。_module的类型是OrderedDict
            self._modules[str(idx)] = module

    def forward(self, X):
        # OrderedDict保证了按照成员添加的顺序遍历它们
        for block in self._modules.values():
            X = block(X)
        return X

__init__函数将每个模块逐个添加到有序字典_modules中。 读者可能会好奇为什么每个Module都有一个_modules属性? 以及为什么我们使用它而不是自己定义一个Python列表? 简而言之,_modules的主要优点是: 在模块的参数初始化过程中, 系统知道在_modules字典中查找需要初始化参数的子块。

当MySequential的前向传播函数被调用时, 每个添加的块都按照它们被添加的顺序执行。 现在可以使用我们的MySequential类重新实现多层感知机。

net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
net(X)

在这里插入图片描述
请注意,MySequential的用法与之前为Sequential类编写的代码相同 (如 4.3节 中所述)。

在前向传播函数中执行代码

Sequential类使模型构造变得简单, 允许我们组合新的架构,而不必定义自己的类。 然而,并不是所有的架构都是简单的顺序架构。 当需要更强的灵活性时,我们需要定义自己的块。 例如,我们可能希望在前向传播函数中执行Python的控制流。 此外,我们可能希望执行任意的数学运算, 而不是简单地依赖预定义的神经网络层。

到目前为止, 我们网络中的所有操作都对网络的激活值及网络的参数起作用。 然而,有时我们可能希望合并既不是上一层的结果也不是可更新参数的项, 我们称之为常数参数(constant parameter)。 例如,我们需要一个计算函数 在这里插入图片描述的层, 其中x是输入, w是参数, c是某个在优化过程中没有更新的指定常量。 因此我们实现了一个FixedHiddenMLP类,如下所示:

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        # 不计算梯度的随机权重参数。因此其在训练期间保持不变
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        # 使用创建的常量参数以及relu和mm函数
        X = F.relu(torch.mm(X, self.rand_weight) + 1)
        # 复用全连接层。这相当于两个全连接层共享参数
        X = self.linear(X)
        # 控制流
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()

在这个FixedHiddenMLP模型中,我们实现了一个隐藏层, 其权重(self.rand_weight)在实例化时被随机初始化,之后为常量这个权重不是一个模型参数,因此它永远不会被反向传播更新。 然后,神经网络将这个固定层的输出通过一个全连接层。

注意,在返回输出之前,模型做了一些不寻常的事情: 它运行了一个while循环,在L_1范数大于1的条件下, 将输出向量除以2,直到它满足条件为止。 最后,模型返回了X中所有项的和。 注意,此操作可能不会常用于在任何实际任务中, 我们只展示如何将任意代码集成到神经网络计算的流程中。

net = FixedHiddenMLP()
net(X)

在这里插入图片描述
我们可以混合搭配各种组合块的方法。 在下面的例子中,我们以一些想到的方法嵌套块。

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)

    def forward(self, X):
        return self.linear(self.net(X))

chimera = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
chimera(X)

在这里插入图片描述

效率

读者可能会开始担心操作效率的问题。 毕竟,我们在一个高性能的深度学习库中进行了大量的字典查找、 代码执行和许多其他的Python代码。 Python的问题 全局解释器锁 是众所周知的。 在深度学习环境中,我们担心速度极快的GPU可能要等到CPU运行Python代码后才能运行另一个作业。

小结

  • 一个块可以由许多层组成;一个块可以由许多块组成。
  • 块可以包含代码。
  • 块负责大量的内部处理,包括参数初始化和反向传播。
  • 层和块的顺序连接由Sequential块处理。

5.2 参数管理

本节,我们将介绍以下内容:

  • 访问参数,用于调试、诊断和可视化;
  • 参数初始化;
  • 在不同模型组件间共享参数。

我们首先看一下具有单隐藏层的多层感知机。

import torch
from torch import nn

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

在这里插入图片描述

参数访问

我们从已有模型中访问参数。 当通过Sequential类定义模型时, 我们可以通过索引来访问模型的任意层。 这就像模型是一个列表一样,每层的参数都在其属性中。 如下所示,我们可以检查第二个全连接层的参数。

print(net[2].state_dict())
OrderedDict([('weight', tensor([[-0.0427, -0.2939, -0.1894,  0.0220, -0.1709, -0.1522, -0.0334, -0.2263]])), ('bias', tensor([0.0887]))])

输出的结果告诉我们一些重要的事情: 首先,这个全连接层包含两个参数,分别是该层的权重和偏置。 两者都存储为单精度浮点数(float32)。 注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。

1.目标参数

注意,每个参数都表示为参数类的一个实例。 要对参数执行任何操作,首先我们需要访问底层的数值。 有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。 下面的代码从**第二个全连接层(即第三个神经网络层)**提取偏置, 提取后返回的是一个参数类实例,并进一步访问该参数的值。

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)

在这里插入图片描述
参数是复合的对象,包含值、梯度和额外信息。 这就是我们需要显式参数值的原因。 除了值之外,我们还可以访问每个参数的梯度。 在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态

net[2].weight.grad == None

在这里插入图片描述

2.一次性访问所有参数

当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数。 下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层

print(*[(name, param.shape) for name, param in net[0].named_parameters()])
print(*[(name, param.shape) for name, param in net.named_parameters()])

*表示解包操作,将元组中的元素解包成多个参数传递给print()函数,使得打印的结果更加清晰易读。

('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

可以看到有0、2,但没有1,也就是说relu是拿不出来的

这为我们提供了另一种访问网络参数的方式,如下所示。

根据名字来获取参数:

net.state_dict()['2.bias'].data

在这里插入图片描述

3.从嵌套块收集参数

让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。 我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。

def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                         nn.Linear(8, 4), nn.ReLU())

def block2():
    net = nn.Sequential()
    for i in range(4):
        # 在这里嵌套
        net.add_module(f'block {i}', block1())
    return net

rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)

在这里插入图片描述

print(rgnet)

在这里插入图片描述
因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。 下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data

在这里插入图片描述

参数初始化

知道了如何访问参数后,现在我们看看如何正确地初始化参数。 我们在 4.8节中讨论了良好初始化的必要性。 深度学习框架提供默认随机初始化, 也允许我们创建自定义初始化方法, 满足我们通过其他规则实现初始化权重。

默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵, 这个范围是根据输入和输出维度计算出的。 PyTorch的nn.init模块提供了多种预置初始化方法。

1.内置初始化

让我们首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。

def init_normal(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, mean=0, std=0.01)
        nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]

在这里插入图片描述
我们还可以将所有参数初始化为给定的常数,比如初始化为1。

def init_constant(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 1)
        nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]

apply函数的功能是将传入的函数应用到指定的module上,不只是初始化,做什么都行
在这里插入图片描述
我们还可以对某些块应用不同的初始化方法。 例如,下面我们使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。

def init_xavier(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
def init_42(m):
    if type(m) == nn.Linear:
        nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)

在这里插入图片描述

2.自定义初始化

有时,深度学习框架没有提供我们需要的初始化方法。 在下面的例子中,我们使用以下的分布为任意权重参数
定义初始化方法:
在这里插入图片描述

同样,我们实现了一个my_init函数来应用到net。

def my_init(m):
    if type(m) == nn.Linear:
        print("Init", *[(name, param.shape)
                        for name, param in m.named_parameters()][0])
        nn.init.uniform_(m.weight, -10, 10)
        m.weight.data *= m.weight.data.abs() >= 5 # 保留绝对值大于等于5的权重,不是的话就设成0

net.apply(my_init)
net[0].weight[:2]

在这里插入图片描述
注意,我们始终可以直接设置参数

net[0].weight.data[:] += 1
net[0].weight.data[0, 0] = 42
net[0].weight.data[0]

在这里插入图片描述

参数绑定

有时我们希望在多个层间共享参数: 我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),
                    shared, nn.ReLU(),
                    shared, nn.ReLU(),
                    nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])

在这里插入图片描述
这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。 这里有一个问题:当参数绑定时,梯度会发生什么情况? 答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层 (即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起

5.4 自定义层

有时我们会遇到或要自己发明一个现在在深度学习框架中还不存在的层。 在这些情况下,必须构建自定义层。本节将展示如何构建自定义层。

不带参数的层

首先,我们构造一个没有任何参数的自定义层。 回忆一下在 5.1节对块的介绍, 这应该看起来很眼熟。 下面的CenteredLayer类要从其输入中减去均值。 要构建它,我们只需继承基础层类并实现前向传播功能。

import torch
import torch.nn.functional as F
from torch import nn


class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, X):
        return X - X.mean()

让我们向该层提供一些数据,验证它是否能按预期工作。

layer = CenteredLayer()
layer(torch.FloatTensor([1, 2, 3, 4, 5]))

在这里插入图片描述
现在,我们可以将层作为组件合并到更复杂的模型中。

net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())

作为额外的健全性检查,我们可以在向该网络发送随机数据后,检查均值是否为0。 由于我们处理的是浮点数,因为存储精度的原因,我们仍然可能会看到一个非常小的非零数

Y = net(torch.rand(4, 8))
Y.mean()

在这里插入图片描述

带参数的层

下面我们继续定义具有参数的层, 这些参数可以通过训练进行调整。 我们可以使用内置函数来创建参数,这些函数提供一些基本的管理功能。 比如管理访问、初始化、共享、保存和加载模型参数。 这样做的好处之一是:我们不需要为每个自定义层编写自定义的序列化程序。

现在,让我们实现自定义版本的全连接层。 回想一下,该层需要两个参数,一个用于表示权重,另一个用于表示偏置项。 在此实现中,我们使用修正线性单元作为激活函数。 该层需要输入参数:in_units和units,分别表示输入数和输出数。

class MyLinear(nn.Module):
    def __init__(self, in_units, units):
        super().__init__()
        self.weight = nn.Parameter(torch.randn(in_units, units))
        self.bias = nn.Parameter(torch.randn(units,))
    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)

接下来,我们实例化MyLinear类并访问其模型参数。

linear = MyLinear(5, 3)
linear.weight

在这里插入图片描述
我们可以使用自定义层直接执行前向传播计算。

linear(torch.rand(2, 5))

在这里插入图片描述
我们还可以使用自定义层构建模型,就像使用内置的全连接层一样使用自定义层。

net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
net(torch.rand(2, 64))

在这里插入图片描述

5.5 读写文件

有时我们希望保存训练的模型, 以备将来在各种环境中使用(比如在部署中进行预测)。 此外,当运行一个耗时较长的训练过程时, 最佳的做法是定期保存中间结果, 以确保在服务器电源被不小心断掉时,我们不会损失几天的计算结果。 因此,现在是时候学习如何加载和存储权重向量和整个模型了。

加载和保存张量

对于单个张量,我们可以直接调用load和save函数分别读写它们。 这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。

import torch
from torch import nn
from torch.nn import functional as F

x = torch.arange(4)
torch.save(x, 'x-file')

我们现在可以将存储在文件中的数据读回内存。

x2 = torch.load('x-file')
x2

在这里插入图片描述
我们可以存储一个张量列表,然后把它们读回内存。

y = torch.zeros(4)
torch.save([x, y],'x-files')
x2, y2 = torch.load('x-files')
(x2, y2)

在这里插入图片描述
我们甚至可以写入或读取从字符串映射到张量的字典。 当我们要读取或写入模型中的所有权重时,这很方便。

mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
mydict2

在这里插入图片描述

加载和保存模型参数

保存单个权重向量(或其他张量)确实有用, 但是如果我们想保存整个模型,并在以后加载它们, 单独保存每个向量则会变得很麻烦。 毕竟,我们可能有数百个参数散布在各处。 因此,深度学习框架提供了内置函数来保存和加载整个网络。 需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。 例如,如果我们有一个3层多层感知机,我们需要单独指定架构。 因为模型本身可以包含任意代码,所以模型本身难以序列化。 因此,为了恢复模型,我们需要用代码生成架构, 然后从磁盘加载参数。 让我们从熟悉的多层感知机开始尝试一下。

class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

接下来,我们将模型的参数存储在一个叫做“mlp.params”的文件中。

torch.save(net.state_dict(), 'mlp.params')

为了恢复模型,我们实例化了原始多层感知机模型的一个备份。 这里我们不需要随机初始化模型参数,而是直接读取文件中存储的参数

clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()

在这里插入图片描述
由于两个实例具有相同的模型参数,在输入相同的X时, 两个实例的计算结果应该相同。 让我们来验证一下。

Y_clone = clone(X)
Y_clone == Y

在这里插入图片描述

5.6 GPU

我们先看看如何使用单个NVIDIA GPU进行计算。 首先,确保至少安装了一个NVIDIA GPU。 然后,下载NVIDIA驱动和CUDA 并按照提示设置适当的路径。 当这些准备工作完成,就可以使用nvidia-smi命令来查看显卡信息。

!nvidia-smi

在PyTorch中,每个数组都有一个设备(device), 我们通常将其称为环境(context)。 默认情况下,所有变量和相关的计算都分配给CPU。 有时环境可能是GPU。 当我们跨多个服务器部署作业时,事情会变得更加棘手。 通过智能地将数组分配给环境, 我们可以最大限度地减少在设备之间传输数据的时间。 例如,当在带有GPU的服务器上训练神经网络时, 我们通常希望模型的参数在GPU上。

要运行此部分中的程序,至少需要两个GPU。 注意,对大多数桌面计算机来说,这可能是奢侈的,但在云中很容易获得。 例如可以使用AWS EC2的多GPU实例。 本书的其他章节大都不需要多个GPU, 而本节只是为了展示数据如何在不同的设备之间传递。

计算设备

我们可以指定用于存储和计算的设备,如CPU和GPU。 默认情况下,张量是在内存中创建的,然后使用CPU计算它,如果要使用gpu需要指定

在PyTorch中,CPU和GPU可以用torch.device(‘cpu’) 和torch.device(‘cuda’)表示。 应该注意的是,cpu设备意味着所有物理CPU和内存, 这意味着PyTorch的计算将尝试使用所有CPU核心。 然而,gpu设备只代表一个卡和相应的显存。 如果有多个GPU,我们使用torch.device(f’cuda:{i}') 来表示第i块GPU(i从0开始)。 另外,cuda:0和cuda是等价的

import torch
from torch import nn

torch.device('cpu'), torch.device('cuda'), torch.device('cuda:1')

在这里插入图片描述
我们可以查询可用gpu的数量。

torch.cuda.device_count()

在这里插入图片描述
现在我们定义了两个方便的函数, 这两个函数允许我们在不存在所需所有GPU的情况下运行代码。

def try_gpu(i=0):  #@save
    """如果存在,则返回gpu(i),否则返回cpu()"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def try_all_gpus():  #@save
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""
    devices = [torch.device(f'cuda:{i}')
             for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]

try_gpu(), try_gpu(10), try_all_gpus()

在这里插入图片描述

张量与GPU

我们可以查询张量所在的设备。 默认情况下,张量是在CPU上创建的。

x = torch.tensor([1, 2, 3])
x.device

在这里插入图片描述
需要注意的是,无论何时我们要对多个项进行操作, 它们都必须在同一个设备上。 例如,如果我们对两个张量求和, 我们需要确保两个张量都位于同一个设备上, 否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。

1.存储在GPU上

有几种方法可以在GPU上存储张量。 例如,我们可以在创建张量时指定存储设备。接 下来,我们在第一个gpu上创建张量变量X。 在GPU上创建的张量只消耗这个GPU的显存。 我们可以使用nvidia-smi命令查看显存使用情况。 一般来说,我们需要确保不创建超过GPU显存限制的数据。

X = torch.ones(2, 3, device=try_gpu())
X

在这里插入图片描述
假设我们至少有两个GPU,下面的代码将在第二个GPU上创建一个随机张量。

Y = torch.rand(2, 3, device=try_gpu(1))
Y

在这里插入图片描述

2.复制

如果我们要计算X + Y,我们需要决定在哪里执行这个操作。 例如,如 图5.6.1所示, 我们可以将X传输到第二个GPU并在那里执行操作。 不要简单地X加上Y,因为这会导致异常, 运行时引擎不知道该怎么做:它在同一设备上找不到数据会导致失败。 由于Y位于第二个GPU上,所以我们需要将X移到那里, 然后才能执行相加运算

在这里插入图片描述

Z = X.cuda(1)
print(X)
print(Z)

在这里插入图片描述
现在数据在同一个GPU上(Z和Y都在),我们可以将它们相加。

Y + Z

在这里插入图片描述
假设变量Z已经存在于第二个GPU上。 如果我们还是调用Z.cuda(1)会发生什么? 它将返回Z,而不会复制并分配新内存

Z.cuda(1) is Z

在这里插入图片描述

3.旁注

人们使用GPU来进行机器学习,因为单个GPU相对运行速度快。 但是在设备(CPU、GPU和其他机器)之间传输数据比计算慢得多。 这也使得并行化变得更加困难,因为我们必须等待数据被发送(或者接收), 然后才能继续进行更多的操作。 这就是为什么拷贝操作要格外小心。 根据经验,多个小操作比一个大操作糟糕得多。 此外,一次执行几个操作比代码中散布的许多单个操作要好得多。 如果一个设备必须等待另一个设备才能执行其他操作, 那么这样的操作可能会阻塞。 这有点像排队订购咖啡,而不像通过电话预先订购: 当客人到店的时候,咖啡已经准备好了。

最后,当我们打印张量或将张量转换为NumPy格式时, 如果数据不在内存中,框架会首先将其复制到内存中, 这会导致额外的传输开销。 更糟糕的是,它现在受制于全局解释器锁,使得一切都得等待Python完成。

神经网络与GPU

类似地,神经网络模型可以指定设备。 下面的代码将模型参数放在GPU上。

net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())

在接下来的几章中, 我们将看到更多关于如何在GPU上运行模型的例子, 因为它们将变得更加计算密集。

当输入为GPU上的张量时,模型将在同一GPU上计算结果。

net(X)

在这里插入图片描述
让我们确认模型参数存储在同一个GPU上。

net[0].weight.data.device

在这里插入图片描述
总之,只要所有的数据和参数都在同一个设备上, 我们就可以有效地学习模型。 在下面的章节中,我们将看到几个这样的例子。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2177816.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Matlab实现鲸鱼优化算法优化回声状态网络模型 (WOA-ESN)(附源码)

目录 1.内容介绍 2部分代码 3.实验结果 4.内容获取 1内容介绍 鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种基于座头鲸捕食行为的群智能优化算法。该算法通过模仿座头鲸使用螺旋形路径和包围猎物的策略来探索和开发解空间,以找到…

「Python入门」Pycharm的安装和运行

文章目录 Pycharm介绍文件介绍安装Pycharm打开pycharm配置python解释器运行代码新建文件 Pycharm介绍 PyCharm是由JetBrains打造的一款Python IDE(Integrated Development Environment,集成开发环境),带有一整套可以帮助用户在使…

用manim实现有想法的Pi

这幅图展示了一个关于矩阵乘法的数学公式,背景为深绿色,给人一种简洁而专业的感觉。图中间是一个矩阵乘法的表达式,左侧是两个 2222 矩阵,分别为: 右侧则是它们的乘积,结果矩阵为: 整个公式被一…

Windows:win11旗舰版连接无线显示器,连接失败

摘要:win11系统通过 miracast 无线连接到长虹电视的时候,一直连接不上。查看电脑又是支持 miracast 协议,后续发现关闭防火墙即可正常连接。 一、问题现状 最近公司里新换了电视,打算把笔记本电脑投屏到电视上。由于 HDMI 插拔不…

电子信息工程职称评审流程有哪些?

电子信息工程职称评审流程有哪些? 2024年工程类职称评审6大步骤: 1.确认申报条件 2.准备评审材料 3.提交评审材料 4.组织专家评审 5.进入答辩环节 6.职称公示下证 哪些人可以评电子信息工程呢? 从事微电子、计算机与网络、信息与通信、…

媒体发稿:怎样写下有吸引力的文案共享-华媒舍

媒体发稿推广已成为企业、机构和个人宣传策划的重要方式之一。因为市场竞争激烈,怎样写下有吸引力的爆款文案成为了一个重要环节。这篇科谱详细介绍文章内容将为您分享一些对于如何写下爆款文案的机密手册。 1、关键词的风采 题目是文案的店面,取决于读…

头戴式耳机性价比排名有哪些?五大头戴式耳机排名推荐!

现在头戴式耳机凭借其优良的音质、舒适的佩戴体验和出色的隔音效果,成为了众多音乐爱好者和影音娱乐用户的首选。然而,面对市场上众多品牌和型号,如何选择一款性价比高、符合个人需求的耳机,头戴式耳机性价比排名有哪些&#xff1…

Android OpenGLES2.0开发(三):绘制一个三角形

我们总是对陌生人太客气,而对亲密的人太苛刻 上一篇文章中,我们已经将OpenGL ES环境搭建完成。接下来我们就可以开始我们的绘图之旅了。该篇我们讲解最基本图形三角形的绘制,这是一切绘制的基础。在OpenGL ES的世界里一切图形都可以由三角形拼…

Linux云计算 |【第四阶段】RDBMS1-DAY5

主要内容: 试图概述(创建视图VIEW、修改、查看、删除)、变量(全局变量、会话变量、用户变量、局部变量)、存储过程(创建、调用、删除存储过程)、流程控制结构(分支结构:…

必备!8款热门网页制作工具大汇总

在过去,网站的构建主要依赖专业人员手动编写HTML、CSS和JavaScript等代码。然而,如今涌现出越来越多智能化的网页制作工具,使得任何人都能在零编码基础上轻松创建和设计网站。本文将向您介绍2022年热门的网页制作工具。选择合适的网页制作工具…

【WPF】桌面程序开发之窗口的用户控件详解

使用Visual Studio开发工具,我们可以编写在Windows系统上运行的桌面应用程序。其中,WPF(Windows Presentation Foundation)项目是一种常见的选择。然而,对于初学者来说,WPF项目中xaml页面的布局设计可能是一…

Naive UI 选择器 Select 的:render-label 怎么使用(Vue3 + TS)

项目场景: 在Naive UI 的 选择器 Select组件中 ,如何实现下面的效果 ,在下拉列表中,左边展示色块,右边展示文字。 Naive UI 的官网中提到过这个实现方法,有一个render-label的api,即&#xff…

Golang | Leetcode Golang题解之第442题数组中重复的数据

题目&#xff1a; 题解&#xff1a; func findDuplicates(nums []int) (ans []int) {for _, x : range nums {if x < 0 {x -x}if nums[x-1] > 0 {nums[x-1] - nums[x-1]} else {ans append(ans, x)}}return }

有通话质量更好的蓝牙耳机推荐吗?高品质的平价开放式耳机推荐

个人认为开放式耳机在通话方面还是表现不错的&#xff0c;主要有以下几个原因&#xff1a; 首先&#xff0c;在麦克风设计与配置方面&#xff1a; 拥有高品质麦克风硬件。优质的开放式耳机往往会配备高性能的麦克风&#xff0c;这些麦克风灵敏度较高&#xff0c;能够精准地捕捉…

1.2.1 HuggingFists安装说明-Linux安装

Linux版安装说明 下载地址 【GitHub】https://github.com/Datayoo/HuggingFists 【百度网盘】https://pan.baidu.com/s/12-qzxARjzRjYFvF8ddUJQQ?pwd2024 安装说明 环境要求 操作系统&#xff1a;CentOS7 硬件环境&#xff1a;至少4核8G&#xff0c;系统使用Containerd…

如何理解矩阵的复数特征值和特征向量?

实数特征值的直观含义非常好理解&#xff0c;它就是在对应的特征向量方向上的纯拉伸/压缩。 而复数特征值&#xff0c;我们可以把它放在复数域中理解。但是这里给出一个不那么简洁、但是更加直观的理解方式&#xff1a;把它放在实空间中。那么复数特征值表现的就是旋转等比放大…

Linux进程间的通信(三)IPC-信号通信和system-V消息队列

目录 信号通信 信号动作的改写 测试 信号的发送 消息队列 消息队列创建要用到的函数 send.c&#xff1a; recv.c 控制消息队列 信号通信 信号通信是一种在 Unix 和类 Unix 系统&#xff08;如 Linux&#xff09;中用于进程间异步通知的机制。信号是一种软件中断&#x…

数据库软题3-专门的集合运算

一、投影&#xff08;筛选列&#xff09; 题1 题2 二、选择(筛选行) 三、连接 3.自然连接 题1-自然连接的属性列数&#xff08;几元关系&#xff09;和元组数 解析&#xff1a; 题2-自然连接的属性列数&#xff08;几元关系&#xff09;和元组数 自然连接后的属性个数 A列…

SpringBoot3+Druid YAML配置

背景 Druid连接池是阿里巴巴开源的数据库连接池项目。Druid连接池为监控而生&#xff0c;内置强大的监控功能&#xff0c;监控特性不影响性能。功能强大&#xff0c;能防SQL注入&#xff0c;内置Loging能诊断Hack应用行为。现在已经SpringBoot3&#xff0c;Druid的配置也需要随…

java基础(4)类和对象

目录 1.前言 2.正文 2.1类的定义与使用 2.1.1类的定义 2.1.2类的实例化 2.1.3this引用 2.1.3.1 访问当前对象的成员变量 2.1.3.2调用当前对象的成员方法 2.1.3.3构造函数中的 this 2.1.3.4归纳this 2.2封装 2.2.1封装的定义 2.2.2访问修饰符 2.3static 2.3.1sta…