甘蔗茎节检测系统源码分享

news2025/1/6 19:49:37

甘蔗茎节检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着全球人口的不断增长和对食品需求的日益增加,农业生产的效率和可持续性成为了各国政府和科研机构关注的重点。在这一背景下,精准农业作为一种新兴的农业管理理念,逐渐受到重视。精准农业依赖于高效的数据采集和分析技术,以实现对作物生长状态的实时监测和管理。甘蔗作为重要的经济作物,其生长过程中的各个环节都对最终的产量和质量产生重要影响。因此,开发高效的甘蔗生长监测系统,对于提高甘蔗的产量和品质具有重要的实际意义。

在甘蔗的生长过程中,茎节的发育情况直接影响到甘蔗的生长势和糖分积累。传统的人工监测方法不仅耗时耗力,而且容易受到人为因素的影响,导致数据的准确性和可靠性降低。因此,基于计算机视觉和深度学习技术的自动化检测系统应运而生。YOLO(You Only Look Once)系列算法因其高效的实时检测能力,已成为目标检测领域的热门选择。YOLOv8作为该系列的最新版本,具备更强的特征提取能力和更快的推理速度,适合于复杂环境下的目标检测任务。

本研究旨在基于改进的YOLOv8算法,构建一个高效的甘蔗茎节检测系统。通过对2100张甘蔗茎节图像的训练,系统将能够自动识别和定位甘蔗的茎节,进而为甘蔗的生长监测提供科学依据。该数据集的构建不仅为模型的训练提供了丰富的样本,还为后续的模型优化和性能评估奠定了基础。值得注意的是,甘蔗茎节的检测不仅涉及到目标的识别,还需要考虑到环境因素对检测结果的影响,如光照变化、背景杂乱等。因此,改进YOLOv8算法的关键在于如何增强模型的鲁棒性和适应性,以确保在各种复杂条件下都能保持较高的检测精度。

本研究的意义不仅在于技术层面的创新,更在于推动精准农业的发展。通过实现甘蔗茎节的自动检测,农民可以更及时地掌握甘蔗的生长状况,从而制定更科学的管理措施,提升甘蔗的产量和质量。此外,该系统的成功应用也为其他作物的生长监测提供了借鉴,具有广泛的推广价值和应用前景。

综上所述,基于改进YOLOv8的甘蔗茎节检测系统的研究,不仅具有重要的理论价值,也具有显著的实际应用意义。通过本研究的开展,将为甘蔗生产的智能化、精准化管理提供新的思路和方法,助力农业现代化进程的推进。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 1
names: [‘internode’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们使用了名为“sugarcane stem”的数据集,以支持对甘蔗茎节的检测系统进行改进,特别是针对YOLOv8模型的训练和优化。该数据集专注于甘蔗茎节的特征提取与识别,旨在提升农业自动化和精准农业的应用效果。数据集的类别数量为1,具体类别为“internode”,即甘蔗的茎节部分。通过这一单一类别的专注,我们能够更深入地挖掘甘蔗茎节的形态特征与生长状态,为后续的检测算法提供更加精准的训练数据。

“sugarcane stem”数据集包含了大量高质量的图像,这些图像涵盖了不同生长阶段、不同环境条件下的甘蔗茎节。每张图像都经过精细标注,确保模型在训练过程中能够准确学习到甘蔗茎节的外观特征。这些图像不仅包括了正常生长的茎节,还涵盖了受病虫害影响的茎节样本,极大地丰富了数据集的多样性和复杂性,使得模型在面对实际应用时能够具备更强的鲁棒性。

在数据集的构建过程中,研究团队采取了多种采集方式,包括实地拍摄和实验室控制条件下的拍摄,以确保数据的全面性和代表性。通过这种方式,数据集能够涵盖不同的光照条件、角度和背景,增强了模型的泛化能力。此外,数据集还包含了不同生长环境下的甘蔗样本,如不同土壤类型、气候条件等,这为模型的训练提供了丰富的上下文信息,使其能够更好地适应实际应用场景。

在训练过程中,我们将“sugarcane stem”数据集与YOLOv8模型相结合,利用其强大的特征提取能力和实时检测性能,旨在实现对甘蔗茎节的高效识别。通过对数据集的深入分析与处理,我们可以优化模型的参数设置,调整网络结构,以提高检测的准确性和速度。同时,数据集的单一类别特性使得模型的训练过程更加集中,减少了多类别干扰的影响,从而使得甘蔗茎节的检测更加精准。

为了评估模型的性能,我们将使用标准的评价指标,如平均精度均值(mAP)和召回率等,对模型在“sugarcane stem”数据集上的表现进行全面分析。这一过程不仅有助于验证模型的有效性,还为后续的研究提供了重要的参考依据。

总之,“sugarcane stem”数据集在本研究中扮演了至关重要的角色。通过对该数据集的充分利用,我们期望能够推动甘蔗茎节检测技术的发展,为农业生产提供更为先进的技术支持,助力实现智能农业的愿景。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8算法是Ultralytics公司在2023年推出的最新版本,标志着YOLO系列目标检测模型的又一次重大进化。相较于之前的版本,YOLOv8在多个方面进行了优化与创新,旨在提升目标检测的准确性和速度,同时保持其易用性。YOLOv8的设计理念围绕着快速、准确和灵活展开,使其在各种计算机视觉任务中表现出色,包括目标检测、图像分割和图像分类。

YOLOv8的网络结构可以分为几个主要部分:输入层、主干网络(Backbone)、颈部(Neck)和头部(Head)。首先,在输入层,YOLOv8默认接受640x640像素的图像作为输入。然而,考虑到实际应用中图像的长宽比可能各异,YOLOv8采用了自适应图片缩放技术。这种方法通过将图像的长边按比例缩小到指定尺寸,然后对短边进行填充,尽量减少信息冗余,提升目标检测的速度和效率。此外,在训练过程中,YOLOv8引入了Mosaic图像增强技术,通过随机选择四张图像进行缩放和拼接,生成新的训练样本。这种增强方法有效地提高了模型的泛化能力,使其能够更好地适应不同的场景和目标。

在主干网络部分,YOLOv8对C3模块进行了重要的改进,采用了C2F模块。C2F模块借鉴了YOLOv7中的ELAN设计思想,增加了更多的梯度流分支,旨在在保证轻量化的同时,获取更丰富的特征信息。这种结构的变化不仅提升了模型的精度,还降低了延迟,增强了实时检测的能力。通过这种方式,YOLOv8能够更有效地提取图像中的特征,尤其是在复杂场景下,表现出更强的鲁棒性。

接下来,在颈部(Neck)部分,YOLOv8对特征融合的方式进行了优化。与YOLOv5相比,YOLOv8去除了两次上采样之前的1x1卷积连接层,直接对主干网络不同阶段输出的特征进行上采样。这一改进使得特征融合更加高效,减少了计算复杂度,同时提升了模型的整体性能。

YOLOv8的头部(Head)部分是其最大的创新之一。该部分从耦合头(Coupled-Head)转变为解耦头(Decoupled-Head),将检测和分类的卷积操作分开处理。具体而言,输入特征图首先通过两个1x1卷积模块进行降维,然后分别进行类别预测和边界框位置及IoU(交并比)预测。这种解耦设计使得模型在处理复杂场景时,能够更精准地识别目标,并提高了分类的准确性。

值得注意的是,YOLOv8摒弃了传统的Anchor-Based(基于锚框)方法,转而采用Anchor-Free(无锚框)的方法。这一创新使得目标检测不再依赖于预设的锚框,而是将目标检测转化为关键点检测。通过这种方式,YOLOv8能够在没有锚框约束的情况下,灵活地适应不同大小和形状的目标,显著提高了模型的泛化能力。此外,YOLOv8在损失函数的设计上也进行了优化,取消了对象性分支,采用了更为精确的损失计算方法,使得模型在训练和推理过程中能够快速聚焦于目标附近的区域,提升了检测的准确性。

YOLOv8的这些创新使其在COCOval2017数据集上的表现显著优于之前的版本。通过综合运用多种先进的技术,YOLOv8在目标检测、图像分割和图像分类等任务中展现出卓越的性能。它不仅在精度和速度上超越了所有已知模型,还在处理小目标和高分辨率图像方面表现出色,为计算机视觉领域带来了新的机遇。

总的来说,YOLOv8作为YOLO系列的最新成员,通过对网络结构的全面优化与创新,提升了目标检测的效率和准确性。其在输入处理、特征提取、特征融合及输出预测等各个环节的改进,使得YOLOv8在实际应用中能够更好地应对复杂的视觉任务,展现出强大的适应性和灵活性。随着YOLOv8的广泛应用,目标检测技术的未来将更加光明,为各类智能应用提供强有力的支持。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是对代码的核心部分进行保留和详细注释的版本:

import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令并等待其完成
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行的返回码,0 表示成功,非0表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 实例化并运行应用
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 假设脚本在当前目录下

    # 调用函数运行脚本
    run_script(script_path)

代码分析与注释:

  1. 导入模块

    • sys:用于访问与 Python 解释器紧密相关的变量和函数。
    • subprocess:用于生成新进程、连接到它们的输入/输出/错误管道,并获得返回码。
  2. run_script 函数

    • 该函数接受一个脚本路径作为参数,并在当前 Python 环境中运行该脚本。
    • 使用 sys.executable 获取当前 Python 解释器的路径,以确保脚本在正确的环境中运行。
    • 构建一个命令字符串,使用 streamlit 运行指定的脚本。
    • 使用 subprocess.run 执行构建的命令,并等待其完成。
    • 检查返回码,如果返回码不为0,表示脚本运行出错,并打印错误信息。
  3. 主程序块

    • 通过 if __name__ == "__main__": 确保只有在直接运行该脚本时才会执行以下代码。
    • 指定要运行的脚本路径(这里假设脚本名为 web.py)。
    • 调用 run_script 函数,传入脚本路径以执行该脚本。

这样处理后,代码更加简洁,并且每个部分都有详细的中文注释,便于理解其功能和作用。

这个程序文件 ui.py 的主要功能是运行一个指定的 Python 脚本,具体来说是使用 Streamlit 框架来启动一个 Web 应用。程序的结构相对简单,主要包含了导入模块、定义函数以及执行主程序的逻辑。

首先,文件开头导入了几个必要的模块,包括 sysossubprocess。其中,sys 模块用于访问与 Python 解释器相关的变量和函数,os 模块提供了与操作系统交互的功能,而 subprocess 模块则用于创建新进程、连接到它们的输入/输出/错误管道,并获取它们的返回码。

接下来,程序定义了一个名为 run_script 的函数,该函数接受一个参数 script_path,表示要运行的脚本的路径。在函数内部,首先通过 sys.executable 获取当前 Python 解释器的路径。然后,构建一个命令字符串,使用 Streamlit 的命令行接口来运行指定的脚本。具体的命令格式是 "{python_path}" -m streamlit run "{script_path}",其中 {python_path}{script_path} 会被实际的路径替换。

函数接着使用 subprocess.run 方法来执行构建好的命令,并设置 shell=True 以便在 shell 中运行该命令。执行后,函数会检查返回码,如果返回码不为 0,表示脚本运行出错,程序会打印出相应的错误信息。

最后,在文件的主程序部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行该文件时才会执行后面的代码。在这里,首先调用 abs_path 函数(假设这个函数是用来获取文件的绝对路径)来指定要运行的脚本路径 web.py。然后,调用之前定义的 run_script 函数来运行这个脚本。

总的来说,这个 ui.py 文件的功能是为运行一个基于 Streamlit 的 Web 应用提供了一个简单的接口,能够方便地启动指定的 Python 脚本。

11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\hub\utils.py

以下是代码中最核心的部分,并附上详细的中文注释:

import requests
from ultralytics.utils import TQDM, TryExcept, __version__, ENVIRONMENT, SETTINGS, RANK, ONLINE

def requests_with_progress(method, url, **kwargs):
    """
    使用指定的方法和URL进行HTTP请求,并可选地显示进度条。

    参数:
        method (str): 要使用的HTTP方法(例如 'GET', 'POST')。
        url (str): 要发送请求的URL。
        **kwargs (dict): 传递给底层 `requests.request` 函数的其他关键字参数。

    返回:
        (requests.Response): HTTP请求的响应对象。
    """
    progress = kwargs.pop('progress', False)  # 从kwargs中提取进度参数
    if not progress:
        return requests.request(method, url, **kwargs)  # 如果没有进度,直接发送请求

    # 如果需要显示进度条
    response = requests.request(method, url, stream=True, **kwargs)  # 以流的方式请求
    total = int(response.headers.get('content-length', 0) if isinstance(progress, bool) else progress)  # 获取总大小
    try:
        pbar = TQDM(total=total, unit='B', unit_scale=True, unit_divisor=1024)  # 初始化进度条
        for data in response.iter_content(chunk_size=1024):  # 按块读取内容
            pbar.update(len(data))  # 更新进度条
        pbar.close()  # 关闭进度条
    except requests.exceptions.ChunkedEncodingError:  # 处理连接中断的异常
        response.close()  # 关闭响应
    return response  # 返回响应对象

def smart_request(method, url, retry=3, timeout=30, thread=True, verbose=True, progress=False, **kwargs):
    """
    使用'requests'库进行HTTP请求,支持指数退避重试机制。

    参数:
        method (str): 请求使用的HTTP方法。
        url (str): 要请求的URL。
        retry (int, optional): 尝试重试的次数,默认为3。
        timeout (int, optional): 超时时间(秒),默认为30。
        thread (bool, optional): 是否在单独的线程中执行请求,默认为True。
        verbose (bool, optional): 是否在控制台打印信息,默认为True。
        progress (bool, optional): 是否在请求过程中显示进度条,默认为False。
        **kwargs (dict): 传递给请求函数的其他关键字参数。

    返回:
        (requests.Response): HTTP响应对象。
    """
    retry_codes = (408, 500)  # 仅对这些状态码进行重试

    @TryExcept(verbose=verbose)
    def func(func_method, func_url, **func_kwargs):
        """进行HTTP请求,支持重试和超时,带有可选的进度跟踪。"""
        r = None  # 响应对象
        t0 = time.time()  # 记录开始时间
        for i in range(retry + 1):
            if (time.time() - t0) > timeout:  # 超过超时时间则停止重试
                break
            r = requests_with_progress(func_method, func_url, **func_kwargs)  # 发起请求
            if r.status_code < 300:  # 如果状态码在2xx范围内,表示成功
                break
            # 处理错误信息
            try:
                m = r.json().get('message', 'No JSON message.')
            except AttributeError:
                m = 'Unable to read JSON.'
            if i == 0:  # 仅在第一次请求时打印信息
                if r.status_code in retry_codes:
                    m += f' Retrying {retry}x for {timeout}s.' if retry else ''
                if verbose:
                    LOGGER.warning(f'请求失败: {m} (状态码: {r.status_code})')
            time.sleep(2 ** i)  # 指数退避
        return r  # 返回响应对象

    args = method, url
    kwargs['progress'] = progress  # 将进度参数传递给函数
    if thread:
        threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True).start()  # 在新线程中执行
    else:
        return func(*args, **kwargs)  # 在当前线程中执行请求

代码核心部分解释

  1. requests_with_progress: 该函数用于发送HTTP请求,并在下载过程中显示进度条。它支持流式读取响应内容,并根据响应的内容长度更新进度条。

  2. smart_request: 该函数用于发送HTTP请求,支持重试机制和超时设置。它可以在请求失败时根据特定的状态码进行重试,并在控制台输出相关信息。该函数还支持在单独的线程中执行请求,以避免阻塞主线程。

这两个函数是代码的核心部分,主要用于处理HTTP请求和响应,支持进度显示和错误处理。

这个程序文件是一个用于Ultralytics YOLO(You Only Look Once)算法的工具类,主要涉及到与网络请求、事件分析和环境检测相关的功能。文件中包含了一些导入的库和模块,主要用于处理文件路径、网络请求、线程等操作。

首先,文件定义了一些常量,例如API的根地址和网页根地址,这些地址用于与Ultralytics Hub进行交互。接着,定义了几个函数来处理网络请求。其中,request_with_credentials函数专门用于在Google Colab环境中进行带有凭证的AJAX请求,确保在Colab中能够正确地进行身份验证。

requests_with_progress函数则是一个通用的HTTP请求函数,支持显示下载进度条。它根据请求的响应头部内容长度来动态更新进度条,方便用户了解下载的进度。

smart_request函数则是一个更为复杂的请求处理函数,支持重试机制和超时设置。它会在请求失败时根据设定的重试次数和超时限制进行多次尝试,并且可以选择在单独的线程中执行请求,以避免阻塞主线程。该函数还可以根据请求的状态码进行不同的处理,比如处理速率限制等。

接下来,文件定义了一个Events类,用于收集匿名事件分析数据。该类在初始化时会设置一些基本的元数据,包括Python版本、安装方式等信息。它还会根据设置和环境条件决定是否启用事件收集功能。通过调用该类的实例,可以将新的事件添加到事件列表中,并在达到速率限制时发送这些事件到指定的URL。

最后,文件在末尾创建了Events类的一个实例,准备在后续的操作中使用。整体来看,这个文件为YOLO算法的使用提供了网络请求和事件分析的基础功能,便于开发者在使用YOLO时进行数据收集和处理。

11.3 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\rtdetr_init_.py

以下是代码中最核心的部分,并附上详细的中文注释:

# 导入RTDETR模型类
from .model import RTDETR
# 导入RTDETR预测器类
from .predict import RTDETRPredictor
# 导入RTDETR验证器类
from .val import RTDETRValidator

# 定义模块的公开接口,指定可以被外部访问的类
__all__ = 'RTDETRPredictor', 'RTDETRValidator', 'RTDETR'

注释说明:

  1. 导入模块

    • from .model import RTDETR:从当前包中导入RTDETR模型类,RTDETR是一个用于目标检测的模型。
    • from .predict import RTDETRPredictor:从当前包中导入RTDETRPredictor类,负责使用RTDETR模型进行预测。
    • from .val import RTDETRValidator:从当前包中导入RTDETRValidator类,负责对模型的性能进行验证。
  2. 公开接口

    • __all__变量定义了当前模块中可以被外部访问的类。只有在__all__中列出的类,才能通过from module import *的方式被导入。这种做法有助于控制模块的可见性,避免不必要的内部实现被外部使用。

这个程序文件是一个Python模块的初始化文件,属于Ultralytics YOLO项目的一部分,具体是与RTDETR(Real-Time Detection Transformer)相关的功能模块。文件中首先包含了一条注释,说明了该项目使用的是AGPL-3.0许可证,意味着该代码是开源的,并且遵循相应的开源协议。

接下来,文件通过相对导入的方式引入了三个主要的类或功能:RTDETR、RTDETRPredictor和RTDETRValidator。这些类分别定义在同一目录下的不同文件中。RTDETR类通常是模型的核心实现,负责定义和训练检测模型;RTDETRPredictor类则用于进行预测,处理输入数据并返回模型的输出结果;RTDETRValidator类则用于验证模型的性能,通常在训练后评估模型的准确性和有效性。

最后,__all__变量定义了该模块的公共接口,指定了当使用from module import *语句时,哪些名称会被导入。在这里,__all__包含了三个类的名称,表明它们是该模块的主要功能部分,用户可以直接使用这些类而无需了解模块内部的实现细节。

总的来说,这个文件的主要作用是组织和导出与RTDETR相关的功能,使得其他模块或用户能够方便地使用这些功能。

11.4 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\convnextv2.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
import torch.nn as nn
import torch.nn.functional as F

class LayerNorm(nn.Module):
    """ 自定义的LayerNorm层,支持两种数据格式:channels_last(默认)和channels_first。
    channels_last对应输入形状为(batch_size, height, width, channels),
    而channels_first对应输入形状为(batch_size, channels, height, width)。
    """
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        # 权重和偏置参数
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError 
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        # 根据数据格式选择不同的归一化方式
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)  # 计算均值
            s = (x - u).pow(2).mean(1, keepdim=True)  # 计算方差
            x = (x - u) / torch.sqrt(s + self.eps)  # 标准化
            x = self.weight[:, None, None] * x + self.bias[:, None, None]  # 应用权重和偏置
            return x

class Block(nn.Module):
    """ ConvNeXtV2的基本块,包含深度可分离卷积、归一化、激活函数等。
    
    Args:
        dim (int): 输入通道数。
        drop_path (float): 随机深度率,默认值为0.0。
    """
    def __init__(self, dim, drop_path=0.):
        super().__init__()
        # 深度可分离卷积
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
        self.norm = LayerNorm(dim, eps=1e-6)  # 归一化层
        self.pwconv1 = nn.Linear(dim, 4 * dim)  # 1x1卷积(用线性层实现)
        self.act = nn.GELU()  # 激活函数
        self.pwconv2 = nn.Linear(4 * dim, dim)  # 1x1卷积(用线性层实现)
        self.drop_path = nn.Identity() if drop_path <= 0. else DropPath(drop_path)  # 随机深度

    def forward(self, x):
        input = x  # 保存输入
        x = self.dwconv(x)  # 深度可分离卷积
        x = x.permute(0, 2, 3, 1)  # 调整维度顺序
        x = self.norm(x)  # 归一化
        x = self.pwconv1(x)  # 第一个1x1卷积
        x = self.act(x)  # 激活
        x = self.pwconv2(x)  # 第二个1x1卷积
        x = x.permute(0, 3, 1, 2)  # 恢复维度顺序
        x = input + self.drop_path(x)  # 残差连接
        return x

class ConvNeXtV2(nn.Module):
    """ ConvNeXt V2模型,包含多个特征分辨率阶段和残差块。
    
    Args:
        in_chans (int): 输入图像的通道数,默认值为3。
        num_classes (int): 分类头的类别数,默认值为1000。
        depths (tuple(int)): 每个阶段的块数,默认值为[3, 3, 9, 3]。
        dims (int): 每个阶段的特征维度,默认值为[96, 192, 384, 768]。
        drop_path_rate (float): 随机深度率,默认值为0。
    """
    def __init__(self, in_chans=3, num_classes=1000, 
                 depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], 
                 drop_path_rate=0.):
        super().__init__()
        self.depths = depths
        self.downsample_layers = nn.ModuleList()  # 存储下采样层
        # 初始卷积层
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        # 添加下采样层
        for i in range(3):
            downsample_layer = nn.Sequential(
                    LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                    nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList()  # 存储特征分辨率阶段
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] 
        cur = 0
        # 添加多个残差块
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6)  # 最后的归一化层
        self.head = nn.Linear(dims[-1], num_classes)  # 分类头

    def forward(self, x):
        res = []  # 存储每个阶段的输出
        for i in range(4):
            x = self.downsample_layers[i](x)  # 下采样
            x = self.stages[i](x)  # 残差块处理
            res.append(x)  # 保存输出
        return res  # 返回所有阶段的输出

代码说明:

  1. LayerNorm: 自定义的层归一化,支持不同的输入格式。
  2. Block: ConvNeXtV2的基本构建块,包含深度可分离卷积、归一化、激活函数和残差连接。
  3. ConvNeXtV2: 整个模型的定义,包含多个下采样层和特征分辨率阶段,最后通过线性层进行分类。

这个程序文件实现了ConvNeXt V2模型的结构,主要用于计算机视觉任务,特别是图像分类。文件中包含多个类和函数,下面对其进行逐步讲解。

首先,文件开头部分包含版权信息和导入必要的库,包括PyTorch和一些辅助函数。接着,定义了一个名为LayerNorm的类,该类实现了层归一化(Layer Normalization),支持两种数据格式:channels_lastchannels_first。这意味着输入数据可以是形状为(batch_size, height, width, channels)或(batch_size, channels, height, width)的张量。LayerNormforward方法根据数据格式对输入进行归一化处理。

接下来是GRN类,它实现了全局响应归一化(Global Response Normalization)层。该层通过计算输入的L2范数并进行归一化,来增强模型的表达能力。GRNforward方法计算输入的响应并进行归一化处理,最终返回经过调整的输出。

然后是Block类,代表ConvNeXt V2的基本构建块。它包含一个深度可分离卷积层、层归一化、点卷积(使用线性层实现)、激活函数(GELU)、GRN层和另一个点卷积层。Blockforward方法实现了这些操作,并通过残差连接将输入与输出相加,最后应用随机深度(Drop Path)技术。

ConvNeXtV2类是整个模型的主体,包含多个阶段和下采样层。构造函数中定义了输入通道数、分类头的类别数、每个阶段的块数和特征维度等参数。模型的初始层是一个卷积层和一个层归一化层,后续则是多个下采样层和特征提取阶段,每个阶段由多个Block组成。模型的forward方法依次通过下采样层和特征提取阶段处理输入,并将每个阶段的输出保存到列表中。

接下来,定义了一个update_weight函数,用于更新模型的权重。该函数会检查权重字典中的每个键是否在模型字典中,并且形状是否匹配,如果匹配则更新权重。

最后,文件中定义了一系列函数(如convnextv2_attoconvnextv2_femto等),这些函数用于创建不同规模的ConvNeXt V2模型,并可选择加载预训练权重。每个函数根据不同的深度和维度参数构建模型,并在提供权重时调用update_weight函数来加载权重。

总体而言,这个文件实现了ConvNeXt V2模型的结构和相关功能,适用于图像分类等任务,并提供了灵活的模型配置和权重加载机制。

11.5 code\ultralytics\models\sam\modules\transformer.py

以下是代码中最核心的部分,并附上详细的中文注释:

import math
import torch
from torch import Tensor, nn

class Attention(nn.Module):
    """一个注意力层,允许在投影到查询、键和值之后对嵌入的大小进行下采样。"""

    def __init__(self, embedding_dim: int, num_heads: int, downsample_rate: int = 1) -> None:
        """
        初始化注意力模型,设置给定的维度和参数。

        Args:
            embedding_dim (int): 输入嵌入的维度。
            num_heads (int): 注意力头的数量。
            downsample_rate (int, optional): 内部维度下采样的因子,默认为1。
        """
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate  # 计算内部维度
        self.num_heads = num_heads
        assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."  # 确保num_heads能整除内部维度

        # 定义线性层用于查询、键和值的投影
        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)  # 输出投影层

    @staticmethod
    def _separate_heads(x: Tensor, num_heads: int) -> Tensor:
        """将输入张量分离为指定数量的注意力头。"""
        b, n, c = x.shape  # b: 批量大小, n: 序列长度, c: 特征维度
        x = x.reshape(b, n, num_heads, c // num_heads)  # 重新调整形状以分离头
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    @staticmethod
    def _recombine_heads(x: Tensor) -> Tensor:
        """将分离的注意力头重新组合为一个张量。"""
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)  # 转置以便于重新组合
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        """给定输入的查询、键和值张量,计算注意力输出。"""

        # 输入投影
        q = self.q_proj(q)  # 投影查询
        k = self.k_proj(k)  # 投影键
        v = self.v_proj(v)  # 投影值

        # 分离为多个头
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # 计算注意力
        _, _, _, c_per_head = q.shape  # 获取每个头的特征维度
        attn = q @ k.permute(0, 1, 3, 2)  # 计算注意力得分
        attn = attn / math.sqrt(c_per_head)  # 缩放
        attn = torch.softmax(attn, dim=-1)  # 应用softmax以获得注意力权重

        # 获取输出
        out = attn @ v  # 计算加权值
        out = self._recombine_heads(out)  # 重新组合头
        return self.out_proj(out)  # 通过输出投影层

代码核心部分解释:

  1. Attention类:这是一个实现注意力机制的类,包含了输入的查询、键和值的投影以及计算注意力的逻辑。
  2. 初始化方法:在初始化中定义了输入和输出的线性层,并确保注意力头的数量能够整除内部维度。
  3. 分离和重新组合头:这两个静态方法用于处理多头注意力机制,将输入张量分离成多个头,进行计算后再组合回去。
  4. 前向传播方法:实现了注意力计算的核心逻辑,包括输入的投影、注意力得分的计算、权重的应用以及最终输出的生成。

通过这个类,可以在深度学习模型中实现注意力机制,增强模型对输入信息的处理能力。

这个程序文件定义了一个名为 TwoWayTransformer 的神经网络模块,主要用于处理图像和查询点之间的双向注意力机制。它是一个专门的变换器解码器,能够同时关注输入图像和查询点,适用于目标检测、图像分割和点云处理等任务。

TwoWayTransformer 类的构造函数中,定义了一些重要的属性,包括变换器的层数(depth)、输入嵌入的通道维度(embedding_dim)、多头注意力的头数(num_heads)、MLP块的内部通道维度(mlp_dim)等。该类还创建了一个包含多个 TwoWayAttentionBlock 层的模块列表,这些层构成了变换器的主体结构。此外,还定义了一个最终的注意力层,用于将查询点的注意力应用到图像上,并使用层归一化来处理最终的查询。

forward 方法中,输入的图像嵌入和位置编码被展平并重新排列,以便进行后续处理。然后,准备查询和键,依次通过每个变换器层进行处理。最后,应用最终的注意力层,将查询点的注意力聚焦到图像上,并进行层归一化,返回处理后的查询和键。

TwoWayAttentionBlock 类实现了一个注意力块,包含自注意力和交叉注意力机制。该块由四个主要层组成:对稀疏输入的自注意力、稀疏输入对密集输入的交叉注意力、对稀疏输入的MLP块以及密集输入对稀疏输入的交叉注意力。在构造函数中,初始化了各个层,并设置了是否跳过第一层的位置信息编码。

forward 方法中,首先应用自注意力机制,然后是稀疏输入对密集输入的交叉注意力,接着是MLP块,最后是密集输入对稀疏输入的交叉注意力。每一步都进行了层归一化,以保持数值稳定性。

Attention 类定义了一个注意力层,允许在对查询、键和值进行投影后对嵌入进行下采样。构造函数中初始化了输入嵌入的维度、注意力头的数量以及下采样率。forward 方法计算给定查询、键和值的注意力输出,通过输入投影、分离头部、计算注意力和重组头部来实现。

整体来看,这个文件实现了一个复杂的双向变换器结构,能够有效地处理图像和查询点之间的关系,适用于多种计算机视觉任务。

11.6 train.py

以下是经过简化和注释的核心代码部分,主要集中在 YOLO 检测模型的训练过程中:

import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    基于检测模型的训练类,继承自 BaseTrainer。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建 YOLO 数据集。

        参数:
            img_path (str): 图像文件夹的路径。
            mode (str): 模式,`train` 或 `val`,可以为每种模式自定义不同的数据增强。
            batch (int, optional): 批次大小,仅用于 `rect` 模式。默认为 None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构建并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 仅在 DDP 中初始化数据集 *.cache 一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 根据模式设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择新的图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 调整图像大小
            batch["img"] = imgs  # 更新批次图像
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回 YOLO 检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从 CSV 文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码注释说明:

  1. 构建数据集build_dataset 方法用于根据给定的图像路径和模式(训练或验证)构建 YOLO 数据集。
  2. 数据加载器get_dataloader 方法负责创建数据加载器,确保在分布式训练中只初始化一次数据集。
  3. 预处理批次preprocess_batch 方法对输入的图像批次进行归一化和缩放处理,以适应模型的输入要求。
  4. 获取模型get_model 方法用于创建并返回一个 YOLO 检测模型,可以选择性地加载预训练权重。
  5. 绘制训练样本和指标plot_training_samplesplot_metrics 方法用于可视化训练过程中的样本和性能指标。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的 Python 脚本,主要依赖于 Ultralytics 提供的库。程序中定义了一个 DetectionTrainer 类,该类继承自 BaseTrainer,并实现了一系列与目标检测训练相关的方法。

DetectionTrainer 类中,首先定义了 build_dataset 方法,用于构建 YOLO 数据集。该方法接收图像路径、模式(训练或验证)和批次大小作为参数,并利用 build_yolo_dataset 函数生成数据集。它还根据模型的步幅(stride)来确定图像的处理方式。

接着,get_dataloader 方法用于构建并返回数据加载器。它会根据训练或验证模式来设置数据集的加载方式,并在分布式训练的情况下确保数据集只初始化一次。此方法还会处理数据加载时的打乱(shuffle)设置。

preprocess_batch 方法负责对图像批次进行预处理,包括将图像缩放到适当的大小并转换为浮点数格式。它支持多尺度训练,通过随机选择图像的大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等。这些信息是从数据集中提取的,并被附加到模型中,以便于后续的训练和验证。

get_model 方法用于返回一个 YOLO 检测模型实例,可以选择加载预训练权重。该方法确保模型的类别数量与数据集一致。

get_validator 方法返回一个用于模型验证的 DetectionValidator 实例,该实例将用于评估模型在验证集上的表现。

label_loss_items 方法用于返回一个包含训练损失项的字典,这在目标检测中是必要的,因为需要跟踪不同类型的损失(如边界框损失、类别损失等)。

progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前的轮次、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注信息,帮助可视化训练过程中的样本质量。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和创建带有标签的训练图,以便于分析模型的性能和训练效果。

整体来看,这个文件提供了一个完整的训练框架,涵盖了数据集构建、数据加载、模型设置、训练过程监控和结果可视化等多个方面,适用于使用 YOLO 模型进行目标检测任务的开发和研究。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLO(You Only Look Once)目标检测算法的实现,包含多个模块和工具,旨在提供一个完整的训练、验证和推理框架。项目的核心功能包括数据集构建、模型定义、训练过程管理、损失计算、可视化工具以及多种模型架构的实现(如RTDETR、ConvNeXt V2等)。整体架构通过模块化设计,使得各个部分可以独立开发和维护,同时也便于用户根据需求进行扩展和修改。

文件功能整理表

文件路径功能描述
ui.py提供一个接口以运行基于Streamlit的Web应用,方便用户启动和使用YOLO模型。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\hub\utils.py提供网络请求和事件分析功能,支持与Ultralytics Hub进行交互。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\rtdetr\__init__.py定义RTDETR模型的结构和接口,便于用户使用和扩展该模型。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\convnextv2.py实现ConvNeXt V2模型的结构,支持图像分类等任务。
code\ultralytics\models\sam\modules\transformer.py实现双向变换器结构,处理图像和查询点之间的关系,适用于目标检测和图像分割任务。
train.py提供训练YOLO模型的框架,包括数据集构建、模型设置、训练过程监控和结果可视化等功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\kernel_warehouse.py提供额外的模块和功能,可能用于特定的模型或任务,具体功能需进一步分析。
code\model.py定义模型的基本结构和功能,可能包含不同模型的组合和调用接口。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\nas\__init__.py定义神经架构搜索(NAS)相关的模型和功能,便于用户进行模型优化和选择。
code\ultralytics\utils\instance.py提供与实例相关的工具函数,可能用于处理数据实例和模型实例化。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks\dvc.py实现与数据版本控制(DVC)相关的回调功能,支持模型训练过程中的数据管理。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\instance.py提供与实例相关的工具函数,可能用于处理数据实例和模型实例化(重复,可能需要合并)。
code\ultralytics\utils\tal.py提供与目标检测和图像处理相关的工具函数,可能用于数据增强、后处理等功能。

这个表格概述了每个文件的主要功能,帮助理解整个项目的结构和各个模块之间的关系。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/sugarcane-stem690

参考原始博客2: https://github.com/VisionMillionDataStudio/sugarcane-stem690

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2168310.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

插座检测系统源码分享

插座检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vision …

Docker 天池代码提交

参考零基础入门Docker-cuda练习场_学习赛_天池大赛-阿里云天池的赛制 (aliyun.com) ​ 在Docker零基础入门-CSDN博客中我已经安装了docker,现在开始创建自己的镜像仓库。 1. 开通阿里云容器镜像服务(镜像仓库) 进入容器镜像服务 (aliyun.com) 1.1. 创建个人实例 点击“…

.net 未能加载文件或程序集“System.Diagnostics.DiagnosticSource, Version=6.0.0.1 解决方案

.net webapi 项目以前用的正常&#xff0c;重装server2019后&#xff0c;又把oracle客户端从11g升级成19c&#xff0c;修改了连接字符串后&#xff0c;其他网站都正常&#xff0c;唯独这个webapi报错 报错信息&#xff1a; 未能加载文件或程序集“System.Diagnostics.Diagnos…

Elasticsearch黑窗口启动乱码问题解决方案

问题描述 elasticsearch启动后有乱码现象 解决方案&#xff1a; 提示&#xff1a;这里填写该问题的具体解决方案&#xff1a; 到 \config 文件下找到 jvm.options 文件 打开后 在文件末尾空白处 添加 -Dfile.encodingGBK 保存后重启即可。

精密制造的革新:光谱共焦传感器与工业视觉相机的融合

在现代精密制造领域&#xff0c;对微小尺寸、高精度产品的检测需求日益迫切。光谱共焦传感器凭借其非接触、高精度测量特性脱颖而出&#xff0c;而工业视觉相机则以其高分辨率、实时成像能力著称。两者的融合&#xff0c;不仅解决了传统检测方式在微米级别测量上的局限&#xf…

MySQL 应对大量并发连接之道

《》 在当今的互联网时代&#xff0c;数据库面临着越来越多的并发连接请求。对于 MySQL 来说&#xff0c;如何有效地处理大量的并发连接成为了一个关键问题。本文将探讨 MySQL 处理大量并发连接的方法和策略。 一、并发连接带来的挑战 当 MySQL 数据库面临大量并发连接时&am…

使用 sponge + dtm 轻松实现秒杀抢购服务(HTTP),彻底解决库存与订单数据不一致的难题

秒杀场景的挑战 秒杀是电商中常见的抢购商品场景&#xff0c;其技术特点是瞬间请求量巨大&#xff0c;对服务的性能和一致性要求极高。即使服务出现崩溃&#xff0c;也必须确保库存扣减和订单生成保持一致&#xff0c;避免出现超卖或超买的现象。通过使用 dtm&#xff08;分布…

基于Springboot+Vue的高校体育运动会比赛系统(含源码+数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 该系统…

根据软件架构设计与评估的叙述开发一套机器学习应用开发平台

案例 阅读以下关于软件架构设计与评估的叙述&#xff0c;回答问题 1和问题 2。 【说明】 某公司拟开发一套机器学习应用开发平台&#xff0c;支持用户使用浏览器在线进行基于机器学习的智能应用开发活动。该平台的核心应用场景是用户通过拖拽算法组件灵活定义机器学习流程&…

如何用一段文字或一张图片生成一段视频?

找了下AI视频工具的排行&#xff0c;发现在这款国内好多大模型的AI视频工具都排在前面。测试了好几款&#xff0c;整体感觉还是非常不错&#xff0c;除了生成的时间比较短&#xff0c;清晰度和效果比自己找的会好很多。 AI视频工具文成视频成品展示 一个视频生成的时间大概是5-…

【CTF刷题8】2024.9.26

ps:源自CTFhub 基础认证&#xff1a; 在HTTP中&#xff0c;基本认证&#xff08;英语&#xff1a;Basic access authentication&#xff09;是允许http用户代理&#xff08;如&#xff1a;网页浏览器&#xff09;在请求时&#xff0c;提供 用户名 和 密码 的一种方式。详情请查…

什么是智慧党建?可视化大屏如何推动高质量党建?

在数字化时代&#xff0c;党建工作迎来了新的发展机遇。智慧党建&#xff0c;作为新时代党建工作的创新模式&#xff0c;正逐渐成为推动党的建设向高质量发展的重要力量。它不仅改变了传统的党建工作方式&#xff0c;还通过现代信息技术的应用&#xff0c;提升了党建工作的效率…

HttpSession使用方法及原理

HttpSession使用方法及原理 一、HttpSession使用流程说明二、登录概述具体 三、访问过程概述具体 一、HttpSession使用流程说明 1.用户发送登录请求到服务器。 2.服务器处理登录请求&#xff0c;调用userService.login(loginUser)。 3.如果登录成功&#xff0c;服务器调用requ…

LeetCode(Python)-贪心算法

文章目录 买卖股票的最佳时机问题穷举解法贪心解法 物流站的选址&#xff08;一&#xff09;穷举算法贪心算法 物流站的选址&#xff08;二&#xff09;回合制游戏快速包装 买卖股票的最佳时机问题 给定一个数组&#xff0c;它的第 i 个元素是一支给定股票第 i 天的价格。如果你…

大数据新视界 --大数据大厂之数据清洗工具 OpenRefine 实战:清理与转换数据

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

linux命令:显示已安装在linux内核的模块的详细信息的工具modinfo详解

目录 一、概述 二、使用方法 1、基本的使用语法 2、常用选项 3、输出字段 4、获取帮助 三、示例 四、实际用途 1、诊断问题 2、模块依赖 3、参数配置 五、其他事项 一、概述 modinfo 是 Linux 系统中的一个工具&#xff0c;用于显示有关已安装内核模块的详细信息。…

MySQL 预处理语句:强大的数据库工具

《MySQL 预处理语句&#xff1a;强大的数据库工具》 在 MySQL 数据库的使用中&#xff0c;预处理语句是一个非常有用的功能。它可以提高数据库的性能、安全性和可维护性。那么&#xff0c;什么是预处理语句呢&#xff1f;它又有哪些优点呢&#xff1f;让我们一起来了解一下。 …

C++_24_适配器

A 函数对象 概念&#xff1a; ​ 重载函数调用运算符的类实例化的对象&#xff0c;就叫函数对象.又名仿函数,函数对象和&#xff08;)触发重载函数调用运算符的执行。 作用&#xff1a; ​ 为算法提供策略 示例&#xff1a; #include <iostream> using namespace s…

OCI 简介:Kubernetes 环境下从代码到容器的全流程

OCI 简介 在容器化技术的演进中&#xff0c;OCI&#xff08;Open Container Initiative&#xff09;提供了一套标准化的规范&#xff0c;帮助统一容器的构建、分发和运行。OCI 规范包含三个部分&#xff1a; OCI Image-spec&#xff1a;定义了容器镜像的结构&#xff0c;确保…

自闭症儿童寄宿学校揭秘:全方位呵护孩子成长

自闭症儿童寄宿学校揭秘&#xff1a;星贝育园——全方位呵护孩子成长的温馨港湾 在繁华的广州城&#xff0c;有一所专为自闭症儿童打造的温馨家园——星贝育园自闭症儿童寄宿制学校。这里&#xff0c;不仅是一个提供专业康复训练的地方&#xff0c;更是一个充满爱与关怀的成长…