接口自动化测试框架详解(pytest+allure+aiohttp+ 用例自动生成)

news2024/11/20 13:45:10

🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快   

近期准备优先做接口测试的覆盖,为此需要开发一个测试框架,经过思考,这次依然想做点儿不一样的东西。

  • 接口测试是比较讲究效率的,测试人员会希望很快能得到结果反馈,然而接口的数量一般都很多,而且会越来越多,所以提高执行效率很有必要
  • 接口测试的用例其实也可以用来兼做简单的压力测试,而压力测试需要并发
  • 接口测试的用例有很多重复的东西,测试人员应该只需要关注接口测试的设计,这些重复劳动最好自动化来做
  • pytest和allure太好用了,新框架要集成它们
  • 接口测试的用例应该尽量简洁,最好用yaml,这样数据能直接映射为请求数据,写起用例来跟做填空题一样,便于向没有自动化经验的成员推广,加上我对Python的协程很感兴趣,也学了一段时间,一直希望学以致用,所以http请求我决定用aiohttp来实现。 但是pytest是不支持事件循环的,如果想把它们结合还需要一番功夫。于是继续思考,思考的结果是其实我可以把整个事情分为两部分。 第一部分,读取yaml测试用例,http请求测试接口,收集测试数据。 第二部分,根据测试数据,动态生成pytest认可的测试用例,然后执行,生成测试报告。 这样一来,两者就能完美结合了,也完美符合我所做的设想。想法既定,接着 就是实现了。

第一部分(整个过程都要求是异步非阻塞的)

读取yaml测试用例

一份简单的用例模板我是这样设计的,这样的好处是,参数名和aiohttp.ClientSession().request(method,url,**kwargs)是直接对应上的,我可以不费力气的直接传给请求方法,避免各种转换,简洁优雅,表达力又强。

args:
  - post
  - /xxx/add
kwargs:
  -
    caseName: 新增xxx
    data:
      name: ${gen_uid(10)}
validator:
  -
    json:
      successed: True

异步读取文件可以使用aiofiles这个第三方库,yaml_load是一个协程,可以保证主进程读取yaml测试用例时不被阻塞,通过await yaml_load()便能获取测试用例的数据

async def yaml_load(dir='', file=''):
    """
    异步读取yaml文件,并转义其中的特殊值
    :param file:
    :return:
    """
    if dir:
        file = os.path.join(dir, file)
    async with aiofiles.open(file, 'r', encoding='utf-8', errors='ignore') as f:
        data = await f.read()
 
    data = yaml.load(data)
 
    # 匹配函数调用形式的语法
    pattern_function = re.compile(r'^\${([A-Za-z_]+\w*\(.*\))}$')
    pattern_function2 = re.compile(r'^\${(.*)}$')
    # 匹配取默认值的语法
    pattern_function3 = re.compile(r'^\$\((.*)\)$')
 
    def my_iter(data):
        """
        递归测试用例,根据不同数据类型做相应处理,将模板语法转化为正常值
        :param data:
        :return:
        """
        if isinstance(data, (list, tuple)):
            for index, _data in enumerate(data):
                data[index] = my_iter(_data) or _data
        elif isinstance(data, dict):
            for k, v in data.items():
                data[k] = my_iter(v) or v
        elif isinstance(data, (str, bytes)):
            m = pattern_function.match(data)
            if not m:
                m = pattern_function2.match(data)
            if m:
                return eval(m.group(1))
            if not m:
                m = pattern_function3.match(data)
            if m:
                K, k = m.group(1).split(':')
                return bxmat.default_values.get(K).get(k)
 
            return data
 
    my_iter(data)
 
    return BXMDict(data)

可以看到,测试用例还支持一定的模板语法,如${function}、$(a:b)等,这能在很大程度上拓展测试人员用例编写的能力

http请求测试接口

http请求可以直接用aiohttp.ClientSession().request(method,url,**kwargs),http也是一个协程,可以保证网络请求时不被阻塞,通过await http()便可以拿到接口测试数据

async def http(domain, *args, **kwargs):
    """
    http请求处理器
    :param domain: 服务地址
    :param args:
    :param kwargs:
    :return:
    """
    method, api = args
    arguments = kwargs.get('data') or kwargs.get('params') or kwargs.get('json') or {}
 
    # kwargs中加入token
    kwargs.setdefault('headers', {}).update({'token': bxmat.token})
    # 拼接服务地址和api
    url = ''.join([domain, api])
 
    async with ClientSession() as session:
        async with session.request(method, url, **kwargs) as response:
            res = await response_handler(response)
            return {
                'response': res,
                'url': url,
                'arguments': arguments
            }

收集测试数据

协程的并发真的很快,这里为了避免服务响应不过来导致熔断,可以引入asyncio.Semaphore(num)来控制并发

async def entrace(test_cases, loop, semaphore=None):
    """
    http执行入口
    :param test_cases:
    :param semaphore:
    :return:
    """
    res = BXMDict()
    # 在CookieJar的update_cookies方法中,如果unsafe=False并且访问的是IP地址,客户端是不会更新cookie信息
    # 这就导致session不能正确处理登录态的问题
    # 所以这里使用的cookie_jar参数使用手动生成的CookieJar对象,并将其unsafe设置为True
    async with ClientSession(loop=loop, cookie_jar=CookieJar(unsafe=True), headers={'token': bxmat.token}) as session:
        await advertise_cms_login(session)
        if semaphore:
            async with semaphore:
                for test_case in test_cases:
                    data = await one(session, case_name=test_case)
                    res.setdefault(data.pop('case_dir'), BXMList()).append(data)
        else:
            for test_case in test_cases:
                data = await one(session, case_name=test_case)
                res.setdefault(data.pop('case_dir'), BXMList()).append(data)
 
        return res
 
 
async def one(session, case_dir='', case_name=''):
    """
    一份测试用例执行的全过程,包括读取.yml测试用例,执行http请求,返回请求结果
    所有操作都是异步非阻塞的
    :param session: session会话
    :param case_dir: 用例目录
    :param case_name: 用例名称
    :return:
    """
    project_name = case_name.split(os.sep)[1]
    domain = bxmat.url.get(project_name)
    test_data = await yaml_load(dir=case_dir, file=case_name)
    result = BXMDict({
        'case_dir': os.path.dirname(case_name),
        'api': test_data.args[1].replace('/', '_'),
    })
    if isinstance(test_data.kwargs, list):
        for index, each_data in enumerate(test_data.kwargs):
            step_name = each_data.pop('caseName')
            r = await http(session, domain, *test_data.args, **each_data)
            r.update({'case_name': step_name})
            result.setdefault('responses', BXMList()).append({
                'response': r,
                'validator': test_data.validator[index]
            })
    else:
        step_name = test_data.kwargs.pop('caseName')
        r = await http(session, domain, *test_data.args, **test_data.kwargs)
        r.update({'case_name': step_name})
        result.setdefault('responses', BXMList()).append({
            'response': r,
            'validator': test_data.validator
        })
 
    return result

事件循环负责执行协程并返回结果,在最后的结果收集中,我用测试用例目录来对结果进行了分类,这为接下来的自动生成pytest认可的测试用例打下了良好的基础

def main(test_cases):
    """
    事件循环主函数,负责所有接口请求的执行
    :param test_cases:
    :return:
    """
    loop = asyncio.get_event_loop()
    semaphore = asyncio.Semaphore(bxmat.semaphore)
    # 需要处理的任务
    # tasks = [asyncio.ensure_future(one(case_name=test_case, semaphore=semaphore)) for test_case in test_cases]
    task = loop.create_task(entrace(test_cases, loop, semaphore))
    # 将协程注册到事件循环,并启动事件循环
    try:
        # loop.run_until_complete(asyncio.gather(*tasks))
        loop.run_until_complete(task)
    finally:
        loop.close()
 
    return task.result()

第二部分

动态生成pytest认可的测试用例

首先说明下pytest的运行机制,pytest首先会在当前目录下找conftest.py文件,如果找到了,则先运行它,然后根据命令行参数去指定的目录下找test开头或结尾的.py文件,如果找到了,如果找到了,再分析fixture,如果有session或module类型的,并且参数autotest=True或标记了pytest.mark.usefixtures(a...),则先运行它们;再去依次找类、方法等,规则类似。大概就是这样一个过程。

可以看出,pytest测试运行起来的关键是,必须有至少一个被pytest发现机制认可的testxx.py文件,文件中有TestxxClass类,类中至少有一个def testxx(self)方法。

现在并没有任何pytest认可的测试文件,所以我的想法是先创建一个引导型的测试文件,它负责让pytest动起来。可以用pytest.skip()让其中的测试方法跳过。然后我们的目标是在pytest动起来之后,怎么动态生成用例,然后发现这些用例,执行这些用例,生成测试报告,一气呵成。

# test_bootstrap.py
import pytest
class TestStarter(object):
    def test_start(self):
        pytest.skip('此为测试启动方法, 不执行')

我想到的是通过fixture,因为fixture有setup的能力,这样我通过定义一个scope为session的fixture,然后在TestStarter上面标记use,就可以在导入TestStarter之前预先处理一些事情,那么我把生成用例的操作放在这个fixture里就能完成目标了。

# test_bootstrap.py
import pytest
 
@pytest.mark.usefixtures('te', 'test_cases')
class TestStarter(object):
 
    def test_start(self):
        pytest.skip('此为测试启动方法, 不执行')

pytest有个--rootdir参数,该fixture的核心目的就是,通过--rootdir获取到目标目录,找出里面的.yml测试文件,运行后获得测试数据,然后为每个目录创建一份testxx.py的测试文件,文件内容就是content变量的内容,然后把这些参数再传给pytest.main()方法执行测试用例的测试,也就是在pytest内部再运行了一个pytest!最后把生成的测试文件删除。注意该fixture要定义在conftest.py里面,因为pytest对于conftest中定义的内容有自发现能力,不需要额外导入。

# conftest.py
@pytest.fixture(scope='session')
def test_cases(request):
    """
    测试用例生成处理
    :param request:
    :return:
    """
    var = request.config.getoption("--rootdir")
    test_file = request.config.getoption("--tf")
    env = request.config.getoption("--te")
    cases = []
    if test_file:
        cases = [test_file]
    else:
        if os.path.isdir(var):
            for root, dirs, files in os.walk(var):
                if re.match(r'\w+', root):
                    if files:
                        cases.extend([os.path.join(root, file) for file in files if file.endswith('yml')])
 
    data = main(cases)
 
    content = """
import allure
from conftest import CaseMetaClass
@allure.feature('{}接口测试({}项目)')
class Test{}API(object, metaclass=CaseMetaClass):
    test_cases_data = {}
"""
    test_cases_files = []
    if os.path.isdir(var):
        for root, dirs, files in os.walk(var):
            if not ('.' in root or '__' in root):
                if files:
                    case_name = os.path.basename(root)
                    project_name = os.path.basename(os.path.dirname(root))
                    test_case_file = os.path.join(root, 'test_{}.py'.format(case_name))
                    with open(test_case_file, 'w', encoding='utf-8') as fw:
                        fw.write(content.format(case_name, project_name, case_name.title(), data.get(root)))
                    test_cases_files.append(test_case_file)
 
    if test_file:
        temp = os.path.dirname(test_file)
        py_file = os.path.join(temp, 'test_{}.py'.format(os.path.basename(temp)))
    else:
        py_file = var
 
    pytest.main([
        '-v',
        py_file,
        '--alluredir',
        'report',
        '--te',
        env,
        '--capture',
        'no',
        '--disable-warnings',
    ])
 
    for file in test_cases_files:
        os.remove(file)
 
    return test_cases_files

可以看到,测试文件中有一个TestxxAPI的类,它只有一个test_cases_data属性,并没有testxx方法,所以还不是被pytest认可的测试用例,根本运行不起来。那么它是怎么解决这个问题的呢?答案就是CaseMetaClass。

function_express = """
def {}(self, response, validata):
    with allure.step(response.pop('case_name')):
        validator(response,validata)"""
 
 
class CaseMetaClass(type):
    """
    根据接口调用的结果自动生成测试用例
    """
 
    def __new__(cls, name, bases, attrs):
        test_cases_data = attrs.pop('test_cases_data')
        for each in test_cases_data:
            api = each.pop('api')
            function_name = 'test' + api
            test_data = [tuple(x.values()) for x in each.get('responses')]
            function = gen_function(function_express.format(function_name),
                                    namespace={'validator': validator, 'allure': allure})
            # 集成allure
            story_function = allure.story('{}'.format(api.replace('_', '/')))(function)
            attrs[function_name] = pytest.mark.parametrize('response,validata', test_data)(story_function)
 
        return super().__new__(cls, name, bases, attrs)

CaseMetaClass是一个元类,它读取test_cases_data属性的内容,然后动态生成方法对象,每一个接口都是单独一个方法,在相继被allure的细粒度测试报告功能和pytest提供的参数化测试功能装饰后,把该方法对象赋值给test+api的类属性,也就是说,TestxxAPI在生成之后便有了若干testxx的方法,此时内部再运行起pytest,pytest也就能发现这些用例并执行了。

def gen_function(function_express, namespace={}):
    """
    动态生成函数对象, 函数作用域默认设置为builtins.__dict__,并合并namespace的变量
    :param function_express: 函数表达式,示例 'def foobar(): return "foobar"'
    :return:
    """
    builtins.__dict__.update(namespace)
    module_code = compile(function_express, '', 'exec')
    function_code = [c for c in module_code.co_consts if isinstance(c, types.CodeType)][0]
    return types.FunctionType(function_code, builtins.__dict__)

在生成方法对象时要注意namespace的问题,最好默认传builtins.__dict__,然后自定义的方法通过namespace参数传进去。

后续(yml测试文件自动生成)

至此,框架的核心功能已经完成了,经过几个项目的实践,效果完全超过预期,写起用例来不要太爽,运行起来不要太快,测试报告也整的明明白白漂漂亮亮的,但我发现还是有些累,为什么呢?
我目前做接口测试的流程是,如果项目集成了swagger,通过swagger去获取接口信息,根据这些接口信息来手工起项目创建用例。这个过程很重复很繁琐,因为我们的用例模板已经大致固定了,其实用例之间就是一些参数比如目录、用例名称、method等等的区别,那么这个过程我觉得完全可以自动化。

因为swagger有个网页啊,我可以去提取关键信息来自动创建.yml测试文件,就像搭起架子一样,待项目架子生成后,我再去设计用例填传参就可以了。

于是我试着去解析请求swagger首页得到的HTML,然后失望的是并没有实际数据,后来猜想应该是用了ajax,打开浏览器控制台的时,我发现了api-docs的请求,一看果然是json数据,那么问题就简单了,网页分析都不用了。

import re
import os
import sys
 
from requests import Session
 
template ="""
args:
  - {method}
  - {api}
kwargs:
  -
    caseName: {caseName}
    {data_or_params}:
        {data}
validator:
  -
    json:
      successed: True
"""
 
 
def auto_gen_cases(swagger_url, project_name):
    """
    根据swagger返回的json数据自动生成yml测试用例模板
    :param swagger_url:
    :param project_name:
    :return:
    """
    res = Session().request('get', swagger_url).json()
    data = res.get('paths')
 
    workspace = os.getcwd()
 
    project_ = os.path.join(workspace, project_name)
 
    if not os.path.exists(project_):
        os.mkdir(project_)
 
    for k, v in data.items():
        pa_res = re.split(r'[/]+', k)
        dir, *file = pa_res[1:]
 
        if file:
            file = ''.join([x.title() for x in file])
        else:
            file = dir
 
        file += '.yml'
 
        dirs = os.path.join(project_, dir)
 
        if not os.path.exists(dirs):
            os.mkdir(dirs)
 
        os.chdir(dirs)
 
        if len(v) > 1:
            v = {'post': v.get('post')}
        for _k, _v in v.items():
            method = _k
            api = k
            caseName = _v.get('description')
            data_or_params = 'params' if method == 'get' else 'data'
            parameters = _v.get('parameters')
 
            data_s = ''
            try:
                for each in parameters:
                    data_s += each.get('name')
                    data_s += ': \n'
                    data_s += ' ' * 8
            except TypeError:
                data_s += '{}'
 
        file_ = os.path.join(dirs, file)
 
        with open(file_, 'w', encoding='utf-8') as fw:
            fw.write(template.format(
                method=method,
                api=api,
                caseName=caseName,
                data_or_params=data_or_params,
                data=data_s
            ))
 
        os.chdir(project_)

现在要开始一个项目的接口测试覆盖,只要该项目集成了swagger,就能秒生成项目架子,测试人员只需要专心设计接口测试用例即可,我觉得对于测试团队的推广使用是很有意义的,也更方便了我这样的懒人。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于做【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!凡事要趁早,特别是技术行业,一定要提升技术功底。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2165997.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】STL--string(下)

1.string类对象的修改操作 erase&#xff1a;指定位置删除 int main() {string str1("hello world");str1.push_back(c);//尾插一个ccout << str1 << endl;string str2;str2.append("hello"); // 在str后追加一个字符"hello"cout…

openwrt固件选择推荐一:kwrt

前言 本文将推荐第一个openwrt固件Kwrt&#xff0c;帮助openwrt新手用户快速构建自己固件。下篇会推荐第二个Openwrt优秀固件。 一.openwrt定制系统&#xff1a;Kwrt github项目地址&#xff1a;点击跳转 支持300设备 1.提供在线定制页面&#xff0c;定制预装软件 固件在…

如何在 Windows 台式机或笔记本电脑上恢复未保存的 Excel 文件

您的汗水很容易化为灰烬&#xff0c;如果您没有保存长时间编写的项目报告或电子表格&#xff0c;这可能会令人心碎。丢失 Windows PC 上未保存的 Excel 文件可能是导致这种情况的原因。但您不应该惊慌。仍然有机会恢复未保存的 Excel 文件。 在本指南中&#xff0c;我们将向您…

failed to load steamui.dll的多种处理方法,steamui.dll的作用

在使用Steam平台时&#xff0c;不少玩家可能会遇到“failed to load steamui.dll”这样令人头疼的错误提示。这个错误会阻碍Steam客户端的正常运行&#xff0c;影响我们享受游戏和Steam平台的各种服务。不过&#xff0c;不必过于担心&#xff0c;因为有多种方法可以尝试解决这个…

车位租赁系统的设计与实现

摘 要 传统信息的管理大部分依赖于管理人员的手工登记与管理&#xff0c;然而&#xff0c;随着近些年信息技术的迅猛发展&#xff0c;让许多比较老套的信息管理模式进行了更新迭代&#xff0c;车位信息因为其管理内容繁杂&#xff0c;管理数量繁多导致手工进行处理不能满足广…

3d gaussian splatting公式推导

1. 离散公式推导 nerf中连续的积分渲染公式是&#xff1a; 其中被遮挡率&#xff1a; 那么转换为离散公式后有&#xff1a; 其中&#xff0c;代表j时刻的时间差&#xff0c;将其带入渲染公式&#xff1a; 设透明度 则被遮挡率 有 而gaussian-splating的公式与ner…

CNN-LSTM预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测

CNN-LSTM预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测 目录 CNN-LSTM预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果 基本介绍 本次运行测试环境MATLAB2020b 提出一种包含卷积神经网络和长短…

windows11环境安装lua及luarocks(踩坑篇)

一、lua安装及下载 官方地址&#xff1a; Lua Binaries Download 从这里就有坑了&#xff0c;下载后先解压win64_bin.zip&#xff0c;之后解压lib&#xff0c;用lib中的文件替换win64的&#xff0c;并把include文件夹复制过去&#xff0c;之后复制并重命名lua54&#xff0c;方…

面试知识点总结篇四

一、计算机网络 概念&#xff1a;互连的、自治的计算机系统的集合组成&#xff1a;硬件、软件、协议。功能组成&#xff1a;通信子网&#xff08;物理层、数据链路层、网络层&#xff09;、资源子网&#xff08;会话层、表示层、应用层&#xff09;分别有广域网、城域网、局域…

2024年软考网络工程师中级题库

1【考生回忆版】以下不属于5G网络优点的是&#xff08;A) A.传输过程中消耗的资源少&#xff0c;对设备的电池更友好 B.支持大规模物联网&#xff0c;能够连接大量低功耗设备&#xff0c;提供更高效的管理 C.引入了网络切片技术&#xff0c;允许将物理网络划分为多个虚拟网络…

数据分析:Python语言网络图绘制

文章目录 介绍加载R包类别导入数据下载数据画图介绍 网络图是一种图形表示法,用于展示实体之间的关系。在不同的领域中,网络图有着不同的含义和用途:在生物学中,网络图可以用来表示生物分子之间的相互作用,如蛋白质相互作用网络。 加载R包 import pandas as pd import …

Docker 安装 Apache(图文教程)

Apache HTTP服务器(简称Apache)是一个开源的、跨平台的Web服务器软件,由Apache软件基金会开发和维护。Apache HTTP服务器是世界上最流行的Web服务器软件之一,被广泛用于互联网上的网站和应用程序。 一、拉取镜像 docker pull httpd:latest二、运行容器 Apache的默认端口是…

计算机毕业设计之:宠物服务APP的设计与实现(源码+文档+讲解)

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

Spring Boot 点餐系统:餐饮界的技术革新

第四章 系统设计 4.1 系统体系结构 网上点餐系统的结构图4-1所示&#xff1a; 图4-1 系统结构 模块包括主界面&#xff0c;首页、个人中心、用户管理、美食店管理、美食分类管理、美食信息管理、美食订单管理、美食评价管理、系统管理等进行相应的操作。 登录系统结构图&…

加入AI新引擎,华为数据中台全面智能化升级

作者 | 曾响铃 文 | 响铃说 根据IDC 报告&#xff0c;截至2022年中国数据规模已经达到23.88ZB&#xff0c;预计2027年将达到76.6ZB&#xff0c;五年年均增长速度将达到26.3%。在这样的背景下&#xff0c;如何进一步挖掘数据价值、提高数据应用效率&#xff0c;成为企业们普遍…

vscode下pnpm命令执行不了

今天使用pnpm install 报错&#xff0c;信息如下&#xff1a; 解决方法 一、安装pnpm 用cmd执行命令 npm install pnpm -g 二、用powershell 以管理员身份运行 执行命令 set-ExecutionPolicy RemoteSigned 回到vscode执行 pnpm install已经可以执行了

在线海外代理IP科普:代理主机与代理端口号的作用

代理主机与代理端口作为网络通讯的重要组成部分&#xff0c;发挥着不可或缺的作用。它们不仅为数据传输提供了稳定的通道&#xff0c;也为用户提供了多一层的安全防护机制。本文将深入探讨代理主机与代理端口的定义和作用&#xff0c;揭示其在网络通讯中的重要作用。 1. 代理主…

Chainlit集成LlamaIndex实现知识库高级检索(BM25全文检索器)

检索原理 BM25Retriever类是一个基于BM25算法设计的检索器&#xff0c;它主要用于从一组文档或节点中检索出与查询最相关的文档或节点。这个类的设计目的是为了提高文本检索的效率和准确性&#xff0c;尤其是在处理大量文本数据时。 BM25&#xff08;Best Matching 25&#x…

OpenHarmony(鸿蒙南向)——平台驱动开发【Regulator】

往期知识点记录&#xff1a; 鸿蒙&#xff08;HarmonyOS&#xff09;应用层开发&#xff08;北向&#xff09;知识点汇总 鸿蒙&#xff08;OpenHarmony&#xff09;南向开发保姆级知识点汇总~ 持续更新中…… 概述 功能简介 Regulator模块用于控制系统中各类设备的电压/电流…

大数据毕业设计选题推荐-豆瓣电子图书推荐系统-数据分析-Hive-Hadoop-Spark

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、PHP、.NET、Node.js、GO、微信小程序、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇…