Linux文件IO(九)-原子操作与竞争冒险

news2024/11/15 21:38:12

Linux 是一个多任务、多进程操作系统,系统中往往运行着多个不同的进程、任务,多个不同的进程就有可能对同一个文件进行 IO 操作,此时该文件便是它们的共享资源,它们共同操作着同一份文件;操作系统级编程不同于大家以前接触的裸机编程,裸机程序中不存在进程、多任务这种概念,而在 Linux 系统中,我们必须要留意到多进程环境下可能会导致的竞争冒险。

竞争冒险简介

本小节给大家竞争冒险这个概念,如果学习过 Linux 驱动开发的读者对这些概念应该并不陌生,也就意味着竞争冒险不但存在于 Linux 应用层、也存在于 Linux 内核驱动层。

假设有两个独立的进程 A 和进程 B 都对同一个文件进行追加写操作(也就是在文件末尾写入数据),每一个进程都调用了 open 函数打开了该文件,但未使用 O_APPEND 标志,此时,各数据结构之间的关系如图 3.8.2 所示。每个进程都有它自己的进程控制块 PCB,有自己的文件表(意味着有自己独立的读写位置偏移量),但是共享同一个 inode 节点(也就是对应同一个文件)。假定此时进程 A 处于运行状态,B 未处于等待运行状态,进程 A 调用了 lseek 函数,它将进程 A 的该文件当前位置偏移量设置为 1500 字节处(假设这里是文件末尾),刚好此时进程 A 的时间片耗尽,然后内核切换到了进程 B,进程 B 执行 lseek 函数,也将其对该文件的当前位置偏移量设置为 1500 个字节处(文件末尾)。然后进程 B 调用 write 函数,写入了 100 个字节数据,那么此时在进程 B 中,该文件的当前位置偏移量已经移动到了 1600 字节处。B 进程时间片耗尽,内核又切换到了进程 A,使进程 A 恢复运行,当进程 A 调用 write 函数时,是从进程 A 的该文件当前位置偏移量(1500 字节处)开始写入,此时文件 1500 字节处已经不再是文件末尾了,如果还从 1500字节处写入就会覆盖进程 B 刚才写入到该文件中的数据。

 其上述假设工作流程图如下图所示:

以上给大家所描述的这样一种情形就属于竞争状态(也成为竞争冒险),操作共享资源的两个进程(或线程),其操作之后的所得到的结果往往是不可预期的,因为每个进程(或线程)去操作文件的顺序是不可预期的,即这些进程获得 CPU 使用权的先后顺序是不可预期的,完全由操作系统调配,这就是所谓的竞争状态。

既然存在竞争状态,那么该如何规避或消除这种状态呢?接下来给大家介绍原子操作。

原子操作

在上一章给大家介绍 open 函数的时候就提到过“原子操作”这个概念了,同样在 Linux 驱动编程中,也有这个概念,相信学习过 Linux 驱动编程开发的读者应该有印象。

从上一小节给大家提到的示例中可知,上述的问题出在逻辑操作“先定位到文件末尾,然后再写”,它使用了两个分开的函数调用,首先使用 lseek 函数将文件当前位置偏移量移动到文件末尾、然后在使用 write函数将数据写入到文件。既然知道了问题所在,那么解决办法就是将这两个操作步骤合并成一个原子操作,所谓原子操作,是有多步操作组成的一个操作,原子操作要么一步也不执行,一旦执行,必须要执行完所有步骤,不可能只执行所有步骤中的一个子集。

(1)O_APPEND 实现原子操作

在上一小节给大家提到的示例中,进程 A 和进程 B 都对同一个文件进行追加写操作,导致进程 A 写入的数据覆盖了进程 B 写入的数据,解决办法就是将“先定位到文件末尾,然后写”这两个步骤组成一个原子操作即可,那如何使其变成一个原子操作呢?答案就是 O_APPEND 标志。前面已经给大家多次提到过了 O_APPEND 标志,但是并没有给大家介绍 O_APPEND 的一个非常重要的作用,那就是实现原子操作。当 open 函数的 flags 参数中包含了 O_APPEND 标志,每次执行 write 写入操作时都会将文件当前写位置偏移量移动到文件末尾,然后再写入数据,这里“移动当前写位置偏移量到文件末尾、写入数据”这两个操作步骤就组成了一个原子操作,加入 O_APPEND 标志后,不管怎么写入数据都会是从文件末尾写,这样就不会导致出现“进程 A 写入的数据覆盖了进程 B 写入的数据”这种情况了。

(2)pread()和 pwrite()

pread()和 pwrite()都是系统调用,与 read()、write()函数的作用一样,用于读取和写入数据。区别在于,pread()和 pwrite()可用于实现原子操作,调用 pread 函数或 pwrite 函数可传入一个位置偏移量 offset 参数,用于指定文件当前读或写的位置偏移量,所以调用 pread 相当于调用 lseek 后再调用 read;同理,调用 pwrite相当于调用 lseek 后再调用 write。所以可知,使用 pread 或 pwrite 函数不需要使用 lseek 来调整当前位置偏移量,并会将“移动当前位置偏移量、读或写”这两步操作组成一个原子操作。

pread、pwrite 函数原型如下所示(可通过"man 2 pread"或"man 2 pwrite"命令来查看):

#include <unistd.h>
ssize_t pread(int fd, void *buf, size_t count, off_t offset);
ssize_t pwrite(int fd, const void *buf, size_t count, off_t offset);

 首先调用这两个函数需要包含头文件<unistd.h>。

函数参数和返回值含义如下:

  • fd、buf、count 参数与 read 或 write 函数意义相同。
  • **offset:**表示当前需要进行读或写的位置偏移量。
  • **返回值:**返回值与 read、write 函数返回值意义一样。

虽然 pread(或 pwrite)函数相当于 lseek 与 pread(或 pwrite)函数的集合,但还是有下列区别:

  • 调用 pread 函数时,无法中断其定位和读操作(也就是原子操作);
  • 不更新文件表中的当前位置偏移量。

关于第二点我们可以编写一个简单地代码进行测试,测试代码如下所示:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
		 unsigned char buffer[100];
		 int fd;
		 int ret;

		 /* 打开文件 test_file */
		 fd = open("./test_file", O_RDWR);
		 if (-1 == fd) {
				 perror("open error");
				 exit(-1);
		 }

		 /* 使用 pread 函数读取数据(从偏移文件头 1024 字节处开始读取) */
		 ret = pread(fd, buffer, sizeof(buffer), 1024);
		 if (-1 == ret) {
				 perror("pread error");
				 goto err;
		 }

		 /* 获取当前位置偏移量 */
		 ret = lseek(fd, 0, SEEK_CUR);
		 if (-1 == ret) {
				 perror("lseek error");
				 goto err;
		 }
		 printf("Current Offset: %d\n", ret);
		 ret = 0;
		
err:
		 /* 关闭文件 */
		 close(fd);
		 exit(ret);
}

 在当前目录下存在一个文件 test_file,上述代码中会打开 test_file 文件,然后直接使用 pread 函数读取100 个字节数据,从偏移文件头部 1024 字节处,读取完成之后再使用 lseek 函数获取到文件当前位置偏移量,并将其打印出来。假如 pread 函数会改变文件表中记录的当前位置偏移量,则打印出来的数据应该是1024 + 100 = 1124;如果不会改变文件表中记录的当前位置偏移量,则打印出来的数据应该是 0,接下来编译代码测试:

从上图中可知,打印出来的数据为 0,正如前面所介绍那样,pread 函数确实不会改变文件表中记录的当前位置偏移量;同理,pwrite 函数也是如此,大家可以把 pread 换成 pwrite 函数再次进行测试,不出意外,打印出来的数据依然是 0。

如果把 pread 函数换成 read(或 write)函数,那么打印出来的数据就是 100 了,因为读取了 100 个字节数据,相应的当前位置偏移量会向后移动 100 个字节。

(3)创建一个文件

前面给大家介绍 open 函数的 O_EXCL 标志的时候,也提到了原子操作,其中介绍到:O_EXCL 可以用于测试一个文件是否存在,如果不存在则创建此文件,如果存在则返回错误,这使得测试和创建两者成为一个原子操作。接下来给大家,创建文件中存在着的一个竞争状态。

假设有这么一个情况:进程 A 和进程 B 都要去打开同一个文件、并且此文件还不存在。进程 A 当前正在运行状态、进程 B 处于等待状态,进程 A 首先调用 open("./file", O_RDWR)函数尝试去打开文件,结果返回错误,也就是调用 open 失败;接着进程 A 时间片耗尽、进程 B 运行,同样进程 B 调用 open("./file",O_RDWR)尝试打开文件,结果也失败,接着进程 B 再次调用 open("./file", O_RDWR | O_CREAT, ...)创建此文件,这一次 open 执行成功,文件创建成功;接着进程 B 时间片耗尽、进程 A 继续运行,进程 A 也调用open("./file", O_RDWR | O_CREAT, ...)创建文件,函数执行成功,如下图所示:

从上面的示例可知,进程 A 和进程 B 都会创建出同一个文件,同一个文件被创建两次这是不允许的,那如何规避这样的问题呢?那就是通过使用 O_EXCL 标志,当 open 函数中同时指定了 O_EXCL 和O_CREAT 标志,如果要打开的文件已经存在,则 open 返回错误;如果指定的文件不存在,则创建这个文件,这里就提供了一种机制,保证进程是打开文件的创建者,将“判断文件是否存在、创建文件”这两个步骤合成为一个原子操作,有了原子操作,就保证不会出现图 中所示的情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2165156.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

javase复习day33网络编程

网络编程 常见的软件架构 BS架构 CS架构 网络编程小结 网络编程三要素 三要素小结 IP IPV4 IPV6 IP小结 IPV4的地址分类形式 常用的CMD命令 小结 InetAddress的使用 public class Demo1 {public static void main(String[] args) throws UnknownHostException {//获取IP对象/*…

【EI会议大盘点!涵盖计算机图像视觉、机器学习等众多方向】

EI会议&#xff0c;作为全球知名的学术会议平台&#xff0c;以其广泛的影响力和严格的收录标准著称。 相较于SCI、核心期刊等期刊来说&#xff0c;EI会议的审稿周期更短&#xff0c;最快7天即可录用。 费用上也相对较低&#xff0c;这对于资金和时间双重压力的学生党来说&…

Rpc框架——服务端框架设计

目录 一、Network 二、Protocol 三、Dispatcher 四、RpcRouter 五、Publish-Subscribe 六、Registry-Discovery 七、Server 服务端的功能需求&#xff1a; 基于网络通信接收客户端的请求&#xff0c;提供rpc服务 基于网络通信接收客户端的请求&#xff0c;提供服务注…

【POJ-1061 青蛙的约会】

题目 代码 #include <bits/stdc.h> using namespace std; typedef long long LL; LL ex_gcd(LL a, LL b, LL &x, LL &y) {if (b 0){x 1;y 0;return a;}LL gcd ex_gcd(b, a % b, x, y);LL tmp x;x y;y tmp - a / b * y;return gcd; } int main() {LL x, y…

springboot实战学习(9)(配置mybatis“驼峰命名“和“下划线命名“自动转换)(postman接口测试统一添加请求头)(获取用户详细信息接口)

接着学习。之前的博客的进度&#xff1a;完成用户模块的注册接口的开发以及注册时的参数合法性校验、也基本完成用户模块的登录接口的主逻辑的基础上、JWT令牌"的组成与使用以及完成了"登录认证"&#xff08;生成与验证JWT令牌&#xff09;具体往回看了解的链接…

SpringBoot项目编译运行成功,但有些包名类名仍然下划线标红的解决方法 | Idea

目录 问题解决方案&#xff1a;方法一&#xff1a;方法二【我用这个成功的】 问题 如图&#xff0c;成功运行但有些包名类名仍然下划线标红&#xff0c;强迫症抓狂 成功运行&#xff1a; 有些包导入标红&#xff1a; 解决方案&#xff1a; 方法一&#xff1a; 点击fil…

K8S介绍---搭建集群

Kubernetes介绍 官网&#xff1a;https://kubernetes.io/ 一、应用部署方式演变 1、传统部署&#xff1a;互联网早期&#xff0c;会直接将应用程序部署在物理机上 优点&#xff1a;简单&#xff0c;不需要其他技术的参与 缺点&#xff1a;不能为应用程序定义资源使用边界&a…

AXI4-Stream

AXI4-Stream 简介信号握手机制字节类型TKEEP和TSTRBAXI4-Stream Data FIFO正常模式packet模式 AXI4-Stream Interconnect 简介 这是一种连续流接口&#xff0c;不需要地址线&#xff08;很像 FIFO &#xff0c;一直读或一直写就行&#xff09;。对于这类 IP &#xff0c;ARM 不…

WebUI密码被锁定

锁定密码 打开-webui/打开-webui 讨论 #1027 (github.com) 当你忘记WebUI密码了

通信工程学习:什么是VPN虚拟专用网络

VPN:虚拟专用网络 VPN(Virtual Private Network),即虚拟专用网络,是一种通过公共网络(如互联网)建立私有网络连接的技术。以下是关于VPN的详细解释: 一、VPN虚拟专用网络的定义与原理 VPN通过公共网络(通常是互联网)建立一个临时的、安全的连接,形…

一维数组在内存中的存储

在之前的文章中&#xff0c;我已经介绍了一维数组的创建和初始化和一维数组的使用&#xff0c;今天我们来深入了解一下一维数组在内存中的存储形式。 首先我们先用代码打出数组元素的地址。 #include <stdio.h> int main() { int arr[8]{1,2,3,4,5,11,6,7,8}; int i0; …

单词记忆的化境:用思想的流水去淹没坚硬的石块

其实&#xff0c;鹅卵石通常都是很硬的。但是河底的石子&#xff0c;几乎大多都成了鹅卵石&#xff0c;它们被流水淹没&#xff0c;日复一日、夜以继日的冲刷着&#xff0c;没有了棱角。 在单词的记忆过程中&#xff0c;我们有太多的人&#xff0c;都有着不堪回首的往事&#x…

HDFS分布式文件系统01-HDFS JAVA操作与联邦机制

HDFS分布式文件系统 参考学习目标第三课时知识点1-HDFS的Java API介绍知识点2-案例-使用Java API操作HDFS 第四课时知识点1-Federation机制的实现原理知识点2-Federation机制的特点知识点3-Federation机制的实现知识点4-Erasure Coding 参考 maven的setting.xml配置文件详解 …

影刀RPA实战:网页爬虫之天猫商品数据

1.实战目标 1.1 实战目标 在电商行业&#xff0c;我们经常爬取各个平台的商品数据&#xff0c;通过收集和分析这些商品数据&#xff0c;企业可以了解市场趋势、消费者偏好和竞争对手的动态&#xff0c;从而制定更有效的市场策略。爬取商品数据对于企业在市场竞争中把握先机、…

招联金融2025校招内推喇

【投递方式】 直接扫下方二维码&#xff0c;或点击内推官网https://wecruit.hotjob.cn/SU61025e262f9d247b98e0a2c2/mc/position/campus&#xff0c;使用内推码 igcefb 投递&#xff09; 【招聘岗位】 深圳&#xff0c;武汉&#xff1a; 后台开发 前端开发 数据开发 数据运营…

SD卡读写

SD卡 SD卡分类根据存储容量根据性能 SD卡协议简介SPI 模式命令命令格式命令类别CMDACMD 响应R1R2R3R7 寄存器CSD 总线读操作写操作擦除&写保护 初始化流程 SD 模式 IP 设计IP 例化界面IP 接口IP 状态机IP 验证 雷龙贴片式TF卡参考资料 SD卡分类 根据存储容量 Standard Ca…

五星级可视化页面(26):经常被模仿,从未被的超越的大屏界面。

Hello&#xff0c;各位老铁&#xff0c;本期分享的可视化界面&#xff0c;你可能在某些地方见过&#xff0c;或者被某些设计师临摹过&#xff0c;说明它们足够漂亮了&#xff0c; 你如果仔细观看细节&#xff0c;还是会发现很作出彩的地方不是轻易可以模仿的。 只有创新&#x…

linux网络编程8

24.9.25学习目录 一.原始套接字&#xff08;续&#xff09;1.sendto发送数据原始套接字1.ARP 二.Web编程1.概述2.HTML 一.原始套接字&#xff08;续&#xff09; 混杂模式&#xff1a; 指一台机器的网卡能够接受所有经过它的数据包&#xff0c;不论其目的地址是否是它&#xf…

【智能大数据分析 | 实验一】MapReduce实验:单词计数

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈智能大数据分析 ⌋ ⌋ ⌋ 智能大数据分析是指利用先进的技术和算法对大规模数据进行深入分析和挖掘&#xff0c;以提取有价值的信息和洞察。它结合了大数据技术、人工智能&#xff08;AI&#xff09;、机器学习&#xff08;ML&a…

alpine安装docker踩坑记

文章目录 前言错误场景正确操作最后 前言 你好&#xff0c;我是醉墨居士&#xff0c;最近使用alpine操作系统上docker遇到了一些错误&#xff0c;尝试解决之后就准备输出一篇博客&#xff0c;帮助有需要的后人能够少踩坑&#xff0c;因为淋过雨所以想给别人撑伞 错误场景 我…