往期知识点记录:
- 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总
- 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~
- 持续更新中……
概述
功能简介
ADC(Analog to Digital Converter),即模拟-数字转换器,可将模拟信号转换成对应的数字信号,便于存储与计算等操作。除电源线和地线之外,ADC只需要1根线与被测量的设备进行连接,其物理连线如图1所示:
图 1 ADC物理连线示意图
基本概念
- 分辨率
分辨率指的是ADC模块能够转换的二进制位数,位数越多分辨率越高。
- 转换误差
转换误差通常是以输出误差的最大值形式给出。它表示A/D转换器实际输出的数字量和理论上的输出数字量之间的差别。常用最低有效位的倍数表示。
- 转换时间
转换时间是指A/D转换器从转换控制信号到来开始,到输出端得到稳定的数字信号所经过的时间。
运作机制
在HDF框架中,同类型设备对象较多时(可能同时存在十几个同类型配置器),若采用独立服务模式,则需要配置更多的设备节点,且相关服务会占据更多的内存资源。相反,采用统一服务模式可以使用一个设备服务作为管理器,统一处理所有同类型对象的外部访问(这会在配置文件中有所体现),实现便捷管理和节约资源的目的。ADC模块即采用统一服务模式(如图2所示)。
ADC模块各分层的作用为:
-
接口层:提供打开设备,写入数据,关闭设备的能力。
-
核心层:主要负责服务绑定、初始化以及释放管理器,并提供添加、删除以及获取控制器的能力。
-
适配层:由驱动适配者实现与硬件相关的具体功能,如控制器的初始化等。
在统一模式下,所有的控制器都被核心层统一管理,并由核心层统一发布一个服务供接口层,因此这种模式下驱动无需再为每个控制器发布服务。
图 2 ADC统一服务模式结构图
使用指导
场景介绍
ADC设备通常用于将模拟电压转换为数字量,例如与NTC电阻搭配进行温度测量,或者将其他模拟传感器的输出量转换为数字量的场景。当驱动开发者需要将ADC设备适配到OpenHarmony时,需要进行ADC驱动适配,下文将介绍如何进行ADC驱动适配。
接口说明
为了保证上层在调用ADC接口时能够正确的操作硬件,核心层在//drivers/hdf_core/framework/support/platform/include/adc/adc_core.h中定义了以下钩子函数。驱动适配者需要在适配层实现这些函数的具体功能,并与这些钩子函数挂接,从而完成接口层与核心层的交互。
AdcMethod和AdcLockMethod定义:
struct AdcMethod {
int32_t (*read)(struct AdcDevice *device, uint32_t channel, uint32_t *val);
int32_t (*start)(struct AdcDevice *device);
int32_t (*stop)(struct AdcDevice *device);
};
struct AdcLockMethod {
int32_t (*lock)(struct AdcDevice *device);
void (*unlock)(struct AdcDevice *device);
};
c
在适配层中,AdcMethod必须被实现,AdcLockMethod可根据实际情况考虑是否实现。核心层提供了默认的AdcLockMethod,其中使用Spinlock作为保护临界区的锁:
static int32_t AdcDeviceLockDefault(struct AdcDevice *device)
{
if (device == NULL) {
return HDF_ERR_INVALID_OBJECT;
}
return OsalSpinLock(&device->spin);
}
static void AdcDeviceUnlockDefault(struct AdcDevice *device)
{
if (device == NULL) {
return;
}
(void)OsalSpinUnlock(&device->spin);
}
static const struct AdcLockMethod g_adcLockOpsDefault = {
.lock = AdcDeviceLockDefault,
.unlock = AdcDeviceUnlockDefault,
};
c
若实际情况不允许使用Spinlock,驱动适配者可以考虑使用其他类型的锁来实现一个自定义的AdcLockMethod。一旦实现了自定义的AdcLockMethod,默认的AdcLockMethod将被覆盖。
表 1 AdcMethod结构体成员的钩子函数功能说明
函数成员 | 入参 | 出参 | 返回值 | 功能 |
---|---|---|---|---|
read | device:结构体指针,核心层ADC控制器 channel:uint32_t 类型,传入的通道号 | val:uint32_t类型指针,要传出的信号数据 | HDF_STATUS相关状态 | 读取ADC采样的信号数据 |
stop | device:结构体指针,核心层ADC控制器 | 无 | HDF_STATUS相关状态 | 关闭ADC设备 |
start | device:结构体指针,核心层ADC控制器 | 无 | HDF_STATUS相关状态 | 开启ADC设备 |
表 2 AdcLockMethod结构体成员函数功能说明
函数成员 | 入参 | 出参 | 返回值 | 功能 |
---|---|---|---|---|
lock | device:结构体指针,核心层ADC设备对象。 | 无 | HDF_STATUS相关状态 | 获取临界区锁 |
unlock | device:结构体指针,核心层ADC设备对象。 | 无 | HDF_STATUS相关状态 | 释放临界区锁 |
开发步骤
ADC模块适配包含以下四个步骤:
-
实例化驱动入口
- 实例化HdfDriverEntry结构体成员。
- 调用HDF_INIT将HdfDriverEntry实例化对象注册到HDF框架中。
-
配置属性文件
-
在device_info.hcs文件中添加deviceNode描述。
-
【可选】添加adc_config.hcs器件属性文件。
-
-
实例化核心层接口函数
- 初始化AdcDevice成员。
- 实例化AdcDevice成员AdcMethod。
说明:
实例化AdcDevice成员AdcMethod,其定义和成员说明见 接口说明 。
-
驱动调试
【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的测试用例是否成功等。
开发实例
下方将基于Hi3516DV300开发板以//device/soc/hisilicon/common/platform/adc/adc_hi35xx.c驱动为示例,展示需要驱动适配者提供哪些内容来完整实现设备功能。
- 实例化驱动入口
驱动入口必须为HdfDriverEntry(在//drivers/hdf_core/interfaces/inner_api/host/shared/hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。
一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。
ADC驱动入口参考:
ADC控制器会出现多个设备挂接的情况,因而在HDF框架中首先会为此类型的设备创建一个管理器对象。这样,需要打开某个设备时,管理器对象会根据指定参数查找到指定设备。
ADC管理器的驱动由核心层实现,驱动适配者不需要关注这部分内容的实现,但在实现Init函数的时候需要调用核心层的AdcDeviceAdd函数,它会实现相应功能。
static struct HdfDriverEntry g_hi35xxAdcDriverEntry = {
.moduleVersion = 1,
.Init = Hi35xxAdcInit,
.Release = Hi35xxAdcRelease,
.moduleName = "hi35xx_adc_driver", // 【必要且与device_info.hcs文件内的模块名匹配】
};
HDF_INIT(g_hi35xxAdcDriverEntry); // 调用HDF_INIT将驱动入口注册到HDF框架中
// 核心层adc_core.c管理器服务的驱动入口
struct HdfDriverEntry g_adcManagerEntry = {
.moduleVersion = 1,
.Bind = AdcManagerBind, // ADC不需要实现Bind,本例是一个空实现,驱动适配者可根据自身需要添加相关操作
.Init = AdcManagerInit, // 见Init参考
.Release = AdcManagerRelease, // 见Release参考
.moduleName = "HDF_PLATFORM_ADC_MANAGER", // 这与device_info.hcs文件中device0对应
};
HDF_INIT(g_adcManagerEntry); // 调用HDF_INIT将驱动入口注册到HDF框架中
c
- 配置属性文件
完成驱动入口注册之后,下一步请在//vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode信息,并在adc_config.hcs中配置器件属性。
deviceNode信息与驱动入口注册相关,器件属性值对于驱动适配者的驱动实现以及核心层AdcDevice相关成员的默认值或限制范围有密切关系。
统一服务模式的特点是device_info.hcs文件中第一个设备节点必须为ADC管理器,其各项参数如表3所示:
表 3 device_info.hcs节点参数说明
成员名 | 值 |
---|---|
policy | 驱动服务发布的策略,ADC管理器具体配置为2,表示驱动对内核态和用户态都发布服务 |
priority | 驱动启动优先级(0-200),值越大优先级越低。ADC管理器具体配置为50 |
permission | 驱动创建设备节点权限,ADC管理器具体配置为0664 |
moduleName | 驱动名称,ADC管理器固定为HDF_PLATFORM_ADC_MANAGER |
serviceName | 驱动对外发布服务的名称,ADC管理器服务名设置为HDF_PLATFORM_ADC_MANAGER |
deviceMatchAttr | 驱动私有数据匹配的关键字,ADC管理器没有使用,可忽略 |
从第二个节点开始配置具体ADC控制器信息,第一个节点并不表示某一路ADC控制器,而是代表一个资源性质设备,用于描述一类ADC控制器的信息。本例只有一个ADC设备,如有多个设备,则需要在device_info.hcs文件增加deviceNode信息,以及在adc_config.hcs文件中增加对应的器件属性。
- device_info.hcs配置参考
root {
device_info {
platform :: host {
device_adc :: device {
device0 :: deviceNode {
policy = 2;
priority = 50;
permission = 0644;
moduleName = "HDF_PLATFORM_ADC_MANAGER";
serviceName = "HDF_PLATFORM_ADC_MANAGER";
}
device1 :: deviceNode {
policy = 0; // 等于0,不需要发布服务。
priority = 55; // 驱动启动优先级。
permission = 0644; // 驱动创建设备节点权限。
moduleName = "hi35xx_adc_driver"; //【必要】用于指定驱动名称,需要与期望的驱动Entry中的moduleName一致。
serviceName = "HI35XX_ADC_DRIVER"; //【必要】驱动对外发布服务的名称,必须唯一。
deviceMatchAttr = "hisilicon_hi35xx_adc"; //【必要】用于配置控制器私有数据,要与adc_config.hcs中对应控制器保持一致,具体的控制器信息在adc_config.hcs中。
}
}
}
}
}
c
- adc_config.hcs配置参考
此处以Hi3516DV300为例,给出HCS配置参考。其中部分字段为Hi3516DV300特有功能,驱动适配者可根据需要进行删除或添加字段。
root {
platform {
adc_config_hi35xx {
match_attr = "hisilicon_hi35xx_adc";
template adc_device {
regBasePhy = 0x120e0000; // 寄存器物理基地址
regSize = 0x34; // 寄存器位宽
deviceNum = 0; // 设备号
validChannel = 0x1; // 有效通道
dataWidth = 10; // AD转换后的数据位宽,即分辨率
scanMode = 1; // 扫描模式
delta = 0; // 转换结果误差范围
deglitch = 0; // 滤毛刺开关
glitchSample = 5000; // 滤毛刺时间窗口
rate = 20000; // 转换速率
}
device_0 :: adc_device {
deviceNum = 0;
validChannel = 0x2;
}
}
}
}
c
需要注意的是,新增adc_config.hcs配置文件后,必须在hdf.hcs文件中将其包含,否则配置文件无法生效。
例如:本例中adc_config.hcs所在路径为//device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/adc/adc_config.hcs,则必须在产品对应的hdf.hcs中添加如下语句:
#include "../../../../device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/adc/adc_config.hcs" // 配置文件相对路径
c
本例基于Hi3516DV300开发板的小型系统LiteOS内核运行,对应的hdf.hcs文件路径为vendor/hisilicon/hispark_taurus/hdf_config/hdf.hcs以及//device/hisilicon/hispark_taurus/sdk_liteos/hdf_config/hdf.hcs。驱动适配者需根据实际情况选择对应路径下的文件进行修改。
- 实例化核心层函数
完成驱动入口注册之后,下一步就是以核心层AdcDevice对象的初始化为核心,包括初始化驱动适配者自定义结构体(传递参数和数据),实例化AdcDevice成员AdcMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind,Init,Release)。
- 自定义结构体参考。
从驱动的角度看,自定义结构体是参数和数据的载体,而且adc_config.hcs文件中的数值会被HDF读入并通过DeviceResourceIface来初始化结构体成员,其中一些重要数值(例如设备号、总线号等)也会传递给核心层AdcDevice对象。
struct Hi35xxAdcDevice {
struct AdcDevice device; // 【必要】是核心层控制对象,必须作为自定义结构体的首个成员,其具体描述见下方。
volatile unsigned char *regBase; // 【必要】寄存器基地址
volatile unsigned char *pinCtrlBase;
uint32_t regBasePhy; // 【必要】寄存器物理基地址
uint32_t regSize; // 【必要】寄存器位宽
uint32_t deviceNum; // 【必要】设备号
uint32_t dataWidth; // 【必要】信号接收的数据位宽
uint32_t validChannel; // 【必要】有效通道
uint32_t scanMode; // 【必要】扫描模式
uint32_t delta;
uint32_t deglitch;
uint32_t glitchSample;
uint32_t rate; // 【必要】采样率
};
// AdcDevice是核心层控制器结构体,其中的成员在Init函数中会被赋值。
struct AdcDevice {
const struct AdcMethod *ops;
OsalSpinlock spin;
uint32_t devNum;
uint32_t chanNum;
const struct AdcLockMethod *lockOps;
void *priv;
};
c
- AdcDevice成员钩子函数结构体AdcMethod的实例化。
AdcLockMethod钩子函数结构体本例未实现,若要实例化,可参考I2C驱动开发。
static const struct AdcMethod g_method = {
.read = Hi35xxAdcRead,
.stop = Hi35xxAdcStop,
.start = Hi35xxAdcStart,
};
c
- Init函数开发参考
入参:
HdfDeviceObject是整个驱动对外提供的接口参数,具备HCS配置文件的信息。
返回值:
HDF_STATUS相关状态(表4为部分展示,如需使用其他状态,可参考//drivers/hdf_core/interfaces/inner_api/utils/hdf_base.h中HDF_STATUS定义)。
表 4 HDF_STATUS相关状态说明
状态(值) | 问题描述 |
---|---|
HDF_ERR_INVALID_OBJECT | 控制器对象非法 |
HDF_ERR_INVALID_PARAM | 参数非法 |
HDF_ERR_MALLOC_FAIL | 内存分配失败 |
HDF_ERR_IO | I/O错误 |
HDF_SUCCESS | 传输成功 |
HDF_FAILURE | 传输失败 |
函数说明:
初始化自定义结构体对象,初始化AdcDevice成员,并调用核心层AdcDeviceAdd函数。
static int32_t Hi35xxAdcInit(struct HdfDeviceObject *device)
{
int32_t ret;
struct DeviceResourceNode *childNode = NULL;
......
// 遍历、解析adc_config.hcs中的所有配置节点,并分别调用Hi35xxAdcParseInit函数来初始化device。
DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) {
ret = Hi35xxAdcParseInit(device, childNode); // 函数定义见下方
......
}
HDF_LOGI("%s: adc init success.", __func__);
return ret;
}
static int32_t Hi35xxAdcParseInit(struct HdfDeviceObject *device, struct DeviceResourceNode *node)
{
int32_t ret;
struct Hi35xxAdcDevice *hi35xx = NULL; //【必要】自定义结构体对象
(void)device;
hi35xx = (struct Hi35xxAdcDevice *)OsalMemCalloc(sizeof(*hi35xx)); //【必要】内存分配
......
ret = Hi35xxAdcReadDrs(hi35xx, node); //【必要】将adc_config文件的默认值填充到结构体中,函数定义见下方
......
hi35xx->regBase = OsalIoRemap(hi35xx->regBasePhy, hi35xx->regSize); //【必要】地址映射
......
hi35xx->pinCtrlBase = OsalIoRemap(HI35XX_ADC_IO_CONFIG_BASE, HI35XX_ADC_IO_CONFIG_SIZE);
......
Hi35xxAdcDeviceInit(hi35xx); // 【必要】ADC设备的初始化
hi35xx->device.priv = (void *)node; // 【必要】存储设备属性
hi35xx->device.devNum = hi35xx->deviceNum; // 【必要】初始化AdcDevice成员
hi35xx->device.ops = &g_method; // 【必要】AdcMethod的实例化对象的挂载
ret = AdcDeviceAdd(&hi35xx->device); // 【必要且重要】调用此函数填充核心层结构体,返回成功信号后驱动才完全接入平台核心层。
......
return HDF_SUCCESS;
__ERR__:
if (hi35xx != NULL) { // 若不成功,需要执行去初始化相关函数。
if (hi35xx->regBase != NULL) {
OsalIoUnmap((void *)hi35xx->regBase);
hi35xx->regBase = NULL;
}
AdcDeviceRemove(&hi35xx->device);
OsalMemFree(hi35xx);
}
return ret;
}
static int32_t Hi35xxAdcReadDrs(struct Hi35xxAdcDevice *hi35xx, const struct DeviceResourceNode *node)
{
int32_t ret;
struct DeviceResourceIface *drsOps = NULL;
// 获取drsOps方法
drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
if (drsOps == NULL || drsOps->GetUint32 == NULL) {
HDF_LOGE("%s: invalid drs ops", __func__);
return HDF_ERR_NOT_SUPPORT;
}
// 将配置参数依次读出,并填充至结构体中
ret = drsOps->GetUint32(node, "regBasePhy", &hi35xx->regBasePhy, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read regBasePhy failed", __func__);
return ret;
}
ret = drsOps->GetUint32(node, "regSize", &hi35xx->regSize, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read regSize failed", __func__);
return ret;
}
......
return HDF_SUCCESS;
}
c
- Release函数开发参考
入参:
HdfDeviceObject是整个驱动对外提供的接口参数,具备HCS配置文件的信息。
返回值:无。
函数说明:
释放内存和删除控制器,该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源。
static void Hi35xxAdcRelease(struct HdfDeviceObject *device)
{
const struct DeviceResourceNode *childNode = NULL;
......
// 遍历、解析adc_config.hcs中的所有配置节点,并分别进行Release操作。
DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) {
Hi35xxAdcRemoveByNode(childNode);// 函数定义见下
}
}
static void Hi35xxAdcRemoveByNode(const struct DeviceResourceNode *node)
{
int32_t ret;
int32_t deviceNum;
struct AdcDevice *device = NULL;
struct Hi35xxAdcDevice *hi35xx = NULL;
struct DeviceResourceIface *drsOps = NULL;
drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
......
ret = drsOps->GetUint32(node, "deviceNum", (uint32_t *)&deviceNum, 0);
......
// 可以调用AdcDeviceGet函数通过设备的deviceNum获取AdcDevice对象,以及调用AdcDeviceRemove函数来释放AdcDevice对象的内容。
device = AdcDeviceGet(deviceNum);
if (device != NULL && device->priv == node) {
AdcDevicePut(device);
AdcDeviceRemove(device); //【必要】主要是从管理器驱动那边移除AdcDevice对象。
hi35xx = (struct Hi35xxAdcDevice *)device; //【必要】通过强制转换获取自定义的对象并进行Release操作。这一步的前提是device必须作为自定义结构体的首个成员。
OsalIoUnmap((void *)hi35xx->regBase);
OsalMemFree(hi35xx);
}
return;
}
c
-
驱动调试
【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的测试用例是否成功等。
最后
经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?
为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。
《鸿蒙 (Harmony OS)开发学习手册》(共计892页):https://gitcode.com/HarmonyOS_MN/733GH/overview
如何快速入门?
1.基本概念
2.构建第一个ArkTS应用
3.……
鸿蒙开发面试真题(含参考答案):
《OpenHarmony源码解析》:
- 搭建开发环境
- Windows 开发环境的搭建
- Ubuntu 开发环境搭建
- Linux 与 Windows 之间的文件共享
- ……
- 系统架构分析
- 构建子系统
- 启动流程
- 子系统
- 分布式任务调度子系统
- 分布式通信子系统
- 驱动子系统
- ……
OpenHarmony 设备开发学习手册:https://gitcode.com/HarmonyOS_MN/733GH/overview