【第十三章:Sentosa_DSML社区版-机器学习之聚类】

news2024/11/14 7:12:25

目录

13.1 KMeans聚类

13.2 二分KMeans聚类

13.3 高斯混合聚类

13.4 模糊C均值聚类

13.5 Canopy聚类

13.6 Canopy-KMeans聚类

13.7 文档主题生成模型聚类

13.8 谱聚类


【第十三章:Sentosa_DSML社区版-机器学习之聚类】

13.1 KMeans聚类

1.算子介绍

        KMeans聚类算子(k-means clustering algorithm:k均值聚类算法)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。

2.算子类型

        机器学习/聚类算子。

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

k

聚类数目

必填

Int

2

>=2

k-means 聚类最终创建的簇的数目

max_iter

最大迭代次数

必填

Int

20

>0

最大迭代次数

tolerance

收敛偏差

必填

Double

0.0001

>0

收敛偏差

init_mode

初始化算法

必选

String

k-means||

“random”,“k-means||”中的一个

初始化算法类型,可选“random”,“k-means||”

init_steps

k-means||算法的步数

必填

Int

2

>0 并且只在 init_mode 为“k-means||”时让用户设置

“k-means||”算法的步数

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        KMeans算子属性界面如图所示

KMeans属性界面

        聚类中心点有两种初始化方法:随机初始化和“k - means||”算法。当使用“k - means||”算法进行中心点初始化时,需要设置“k - means||”算法的步数参数。

(3)算子的运行

        KMeans为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个KMeans算子,右击算子,点击运行,得到KMeans模型。

运行KMeans算子获得KMeans模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

KMeans模型算子流

        右击模型,查看模型的模型信息

KMeans模型信息

        模型的运行结果如图所示

KMeans模型运行结果

        模型的评估结果如图所示

KMeans模型模型评估结果

13.2 二分KMeans聚类

1.算子介绍

        二分KMeans(BuildBKMeansnode)算法是对K-means的改进,防止聚类陷入局部最优解。它的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二。之后选择能最大限度降低聚类代价函数的簇划分为两个簇。以此进行下去,直到簇的数目等于用户给定的数目k为止。

2.算子类型

        机器学习/聚类算子。

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

k

聚类数目

必填

Int

4

>=2

聚类数目

max_iter

最大迭代次数

必填

Int

20

>0

最大迭代次数

min_divisible_cluster_size

最小可分割簇数目

必填

Double

1.0

>0.0

最小可试用集群大小,如果大于1则为最小点数,如果<1则为最小比例

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        二分KMeans算子属性界面如图所示

二分KMeans属性界面

(3)算子的运行

        二分KMeans为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个二分KMeans算子,右击算子,点击运行,得到二分KMeans模型。

运行二分KMeans算子获得二分KMeans模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

二分KMeans模型算子流

        右击模型,查看模型的模型信息,如图所示。

二分KMeans模型信息

        模型的运行结果如图所示

二分KMeans模型运行结果

        模型的评估结果如图所示

二分KMeans模型评估结果

13.3 高斯混合聚类

1.算子介绍

        高斯混合模型(BuildGMNode)就是用高斯概率密度函数(正态分布曲线)精确地量化事物,它是一个将事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。高斯混合模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,它是一个将事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。

2.算子类型

        机器学习/聚类算子。

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

k

高斯函数的数量

必填

Int

2

>1

混合模型中独立高斯函数的个数。必须大于1。默认值:2。

max_iter

最大迭代次数

必填

Double

100

>0

最大迭代次数

tol

收敛偏差

必填

Double

0.000001

>0

收敛偏差

Wight

权重列设置

非必填

String

在建模时,有时不同的样本可能有不同的权重。我们需要支持用户在建模时指定权重列。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        高斯混合模型属性界面如图所示

高斯混合模型属性界面

(3)算子的运行

        高斯混合模型为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个高斯混合模型算子,右击算子,点击运行,得到高斯混合模型的模型。

运行高斯混合模型算子获得高斯混合模型的模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

高斯混合模型的模型算子流

        右击模型,查看模型的模型信息

高斯混合模型的模型信息

        模型的运行结果如图所示

高斯混合模型运行结果

        模型的评估结果如图所示

高斯混合模型的模型评估结果

13.4 模糊C均值聚类

1.算子介绍

        模糊C均值聚类算法 fuzzy c-means algorithm (FCMA)或称( FCM)。它是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。它除了给出某一样本的具体分类,还可以给出它隶属于每一样本的隶属度。更方便用户对聚类结果有更深入的判断。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

clusters_num

聚类数目

必选

Integer

3

>2

聚类数目

max_iter

最大迭代次数

必选

Integer

100

>=1

最大迭代次数

epsilon

迭代终止判定准则

必选

Double

0.1

0<x<1

迭代中止判定准则

fuzzyness_coefficient

隶属度因子

必选

Double

2.0

>=2.0

隶属度因子

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        模糊C均值模型属性界面如图所示

模糊C均值模型属性界面

        其中迭代终止判定准则表示迭代后中心点坐标的改变量小于0.1时迭代终止。隶属度因子为代价函数中隶属度的加权指数。

(3)算子的运行

        模糊C均值聚类模型为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个模糊C均值聚类模型算子,右击算子,点击运行,得到模糊C均值聚类的模型。

运行模糊C均值聚类算子获得模糊C均值聚类模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

模糊C均值聚类模型的算子流

        右击模型,查看模型信息

模糊C均值聚类模型的模型信息

        模型的运行结果如图所示

模糊C均值聚类模型的运行结果

        模型的评估结果如图所示

模糊C均值聚类模型的评估结果

13.5 Canopy聚类

1.算子介绍

        Canopy算法也是一种常用的聚类算法,它的一种快速粗聚类算法,优势是用户不用事先指定聚类数目。用户需要指定两个距离阈值,T1,T2,且T1>T2。可以认为T2为核心聚类范围,T1为外围聚类范围。每一个训练样本都属于一个确定的核心聚类范围,但可以属于多个外围聚类范围。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

T1

T1值

必填

Double

100.0

>0.0 且 >=T2

Canopy算法T1值

T2

T2值

必填

Double

1.0

>0.0 且 <=T1

Canopy算法T2值

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作。

(2)算子属性设置

        Canopy聚类算子的属性界面如图所示

Canopy聚类算子属性界面

(3)算子的运行

        Canopy聚类算子为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个Canopy聚类算子,右击算子,点击运行,得到Canopy聚类算子的模型。

运行Canopy聚类算子获得Canopy聚类模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

Canopy聚类模型的算子流

        右击模型,查看模型信息

Canopy聚类模型信息

        模型的运行结果如图所示。

Canopy聚类模型的运行结果

        模型的评估结果如图所示

Canopy聚类模型的评估结果

        常见问题解答

        1. 分类结果过多(超过100种)

        该算子建模后,生成过多的分类结果,造成算子报错。

13.6 Canopy-KMeans聚类

1.算子介绍

        Canopy-Kmeans 是结合Canopy和Kmeans两种聚类算法的优势,首先利用Canopy聚类先对数据进行快速“粗”聚类,得到k值后再使用K-means进行进一步“细”聚类。这样既提高聚类算法性能,也不用用户提前指定聚类具体个数。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

T1

T1值

必填

Double

100.0

>0.0 且 >=T2

Canopy算法T1值

T2

T2值

必填

Double

1.0

>0.0 且 <=T1

Canopy算法T2值

max_iter

最大迭代次数

必填

Int

20

>0

最大迭代次数

tolerance

收敛偏差

必填

Double

0.0001

>0.0

收敛偏差

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作。

(2)算子属性设置

        Canopy-KMeans聚类算子的属性界面如图所示

Canopy-KMeans聚类算子属性界面

        Canopy-KMeans聚类算子用Canopy算法确定聚类的初始中心点,再用KMeans算法进行细聚类。

(3)算子的运行

        Canopy-KMeans聚类算子为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个Canopy-KMeans聚类算子,右击算子,点击运行,得到Canopy-KMeans聚类算子的模型。

运行Canopy-KMeans聚类算子获得Canopy-KMeans聚类模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

Canopy-KMeans聚类模型的算子流

        右击模型,查看模型信息

Canopy-KMeans聚类模型信息

        模型的运行结果如图所示

Canopy-KMeans聚类模型的运行结果

        模型的评估结果如图所示

Canopy-KMeans聚类模型的评估结果

13.7 文档主题生成模型聚类

1.算子介绍

        文档主题生成模型聚类(BuildLDANode)也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

k

主题数量

必填

Int

10

>1

推断的主题(集群)的数量。一定是> 1。默认值:10。

max_iter

最大迭代次数

必填

Int

20

>0

最大迭代次数

sub_sampling_rate

采样率

必填

Double

0.05

optimizer=online 且(0,1)

仅适用于优化器为online模式,在每次梯度下降迭代中被采样和使用的语料在(0,1)范围内的分数。

learning_decay

学习速率

必填

Double

0.51

optimizer=online 且(0.5,1.0]

指数衰减速率,仅适用于优化器为online模式,这个值应该在(0.5,1.0]之间,已保证渐进收敛

learning_offset

学习偏移量

必填

Int

1024

optimizer=online且>0

仅适用于优化器online。(正)学习参数,降低早期迭代。 越大的值使早期迭代次数减少。

optimize_doc_concentration

是否优化alpha

必选

Boolean

单选:true false

是否优化文档主题参数

checkpoint_interval

检查点间隔

必填

Int

10

>= 1或者=-1

设置检查点间隔(>= 1)或禁用检查点(-1)的参数。

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        文档主题生成模型的属性界面如图所示

文档主题生成模型聚类属性界面

(3)算子的运行

        文档主题生成模型为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个文档主题生成模型,右击算子,点击运行,得到文档主题生成模型的模型。

运行文档主题生成模型聚类算子获得模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

文档主题生成模型聚类的模型算子流

        右击模型,查看模型信息

文档主题生成模型聚类的模型信息

        模型的运行结果如图所示

文档主题生成模型聚类的模型运行结果

        模型的评估结果如图所示

文档主题生成模型聚类的模型评估结果

12.8 DBSCAN聚类

1.算子介绍

        DBSCAN (Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内(用Eps定义出的半径)所包含对象(点或其他空间对象)的数目不小于某一给定阈值(用MinPts定义的聚类点数)。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

maxDistance

邻域半径R(>0)

必填

Double

10

>0

邻域半径R

minPoints

密度邻域的最小实例数(>0)

必填

Int

10

>0

密度邻域的最小实例数

feature_weight

是否计算特征重要性

必填

Boolean

单选:是,否

是否计算特征重要性

show_pie_chart

是否显示聚类大小饼状图

必填

Boolean

单选:是,否

是否显示聚类大小饼状图

show_distribution_mpa

是否显示聚类分布图

必填

Boolean

单选:是,否

是否显示聚类分布图

skip_null_value

是否跳过空值

必填

Boolean

单选:是,否

是否跳过空值

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        DBSCAN算子属性界面如图所示

DBSCAN属性界面

(3)算子的运行

        DBSCAN为建模算子,需要先训练数据生成模型,再通过模型对相同结构的数据进行处理得到最终结果。具体运行过程如下所述。

        首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),然后接一个DBSCAN算子,右击算子,点击运行,得到DBSCAN模型。

运行DBSCAN算子获得DBSCAN模型

        得到模型后右击模型,可以查看模型信息。模型后可接任意个数据处理算子,再接图表分析算子或数据写出算子,形成算子流执行。模型后也可接评估算子,对模型的聚类结果进行评估。

DBSCAN模型算子流

        右击模型,查看模型的模型信息

DBSCAN模型信息

        模型的运行结果如图所示

DBSCAN模型运行结果

        模型的评估结果如图所示

DBSCAN模型模型评估结果

13.8 谱聚类

1.算子介绍

        谱聚类是从图论中演化出来的算法,它将聚类问题转换成一个无向加权图的多路划分问题。主要思想是把所有数据点看做是一个无向加权图 G = ( V,E ) 的顶点 V ,E 表示两点间的权重,数据点之间的相似度越高权重值越大。然后根据划分准则对所有数据点组成的图进行切图,使切图后不同的子图间的边权重和尽可能低,而子图内的边权重和尽可能高,从而实现聚类的效果。

2.算子类型

        机器学习/聚类算子

3.算子属性说明

属性

页面显示名称

选项

类型

默认值

约束规则

属性说明

Input_list

需要计算的列

必填

Array

列名

需要参与计算的列名

Sigma

Sigma系数

必填

Double

0.05

>0

相似度矩阵计算系数

K

聚类个数

必填

Int

2

>1

聚类的类别数

max_iter

最大迭代次数

必填

Int

3

>0

最大迭代次数

4.算子使用介绍

(1)算子初始化

        参考公共功能算子初始化操作

(2)算子属性设置

        谱聚类算子属性界面如图所示 

DBSCAN属性界面

(3)算子的运行

        谱聚类算子对输入数据计算相似度,然后聚类,输出聚类类别

谱聚类算子执行流程

        执行算子流得到结果

谱聚类算子流执行结果


 为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

Sentosa_DSML社区版​​​​​​​

​​

Sentosa_DSML算子流开发视频

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2161864.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【全新课程】正点原子《ESP32物联网项目实战》培训课程上线!

正点原子《ESP32物联网项目实战》全新培训课程上线啦&#xff01;正点原子工程师手把手教你学&#xff01;通过多个项目实战&#xff0c;掌握ESP32物联网项目的开发&#xff01; 一、课程介绍 本课程围绕物联网实战项目展开教学&#xff0c;内容循序渐进&#xff0c;涵盖了环…

后台管理系统开箱即用的组件库!!【送源码】

今天给大家推荐几款的后台管理系统开箱即用的组件库&#xff0c;基于ElementUI二次封装&#xff0c;开发必备 Headless UI Headless UI 是一款出色的前端组件库&#xff0c;专为与 Tailwind CSS 集成而设计。一组完全无样式、完全可访问的 UI 组件&#xff0c;可以自由的引入…

【Linux】nginx连接前端项目

文章目录 一、项目编译1.编译文件2.dist文件 二、Linux nginx配置三、启动nginx 一、项目编译 1.编译文件 2.dist文件 二、Linux nginx配置 在Xshell软件中&#xff0c;点击CtrlAltF进入文件传输找到地址&#xff1a;/usr/local/nginx/html将dist文件传入 找到nginx.conf&…

考研数据结构——C语言实现冒泡排序

冒泡排序是一种简单的排序算法&#xff0c;它重复地遍历要排序的列表&#xff0c;比较每对相邻元素&#xff0c;并在顺序错误的情况下交换它们。这个过程重复进行&#xff0c;直到没有需要交换的元素&#xff0c;这意味着列表已经排序完成。冒泡排序的名字来源于较小的元素会逐…

mybaits获取sqlsession对象后自动开启事务,增删改要记得提交事务!

mybaits中在使用 SQLSession 对象进行数据库操作时&#xff0c;需要注意事务的处理。 以下是关于这个问题的详细说明&#xff1a; 一、SQLSession 与事务的关系 SQLSession 是 MyBatis 框架中用于执行 SQL 语句和与数据库交互的关键对象。当获取 SQLSession 对象后&#xff…

Kali crunsh字典工具

查看自带密码字典 vim /usr/share/wordlists 使用 crunch 字典工具 随机组成6位纯数字密码 crunch 6 6 0123456789 -o test1.txt 由 Abc1234 随机组成的 6~8 位密码 crunch 6 8 Abc1234 -o test2.txt 以A开头后面跟3位数字组成的4位密码 crunch 4 4 -t A%%% -o test3.txt

【鸿蒙HarmonyOS NEXT】用户首选项Preference存储数据

【鸿蒙HarmonyOS NEXT】数据存储之用户首选项Preference 一、环境说明二、Preference运作机制三、示例代码加以说明四、小结 一、环境说明 DevEco Studio 版本&#xff1a; API版本&#xff1a;以12为主 二、Preference运作机制 应用场景&#xff1a; 用户首选项为应用提…

2024全球科技品牌价值榜50强:苹果第一

根据《Brand Finance 2024年全球最具价值科技品牌榜单报告》&#xff0c;中国品牌在社交媒体、电子和电器行业表现卓越。 全球排名前三的是&#xff1a;苹果、微软以及 Google。国内前几的是&#xff1a;抖音、微信和华为&#xff0c;分为位于第五、十一、十五位。 英伟达在人工…

深度学习|误差逆传播:梯度速解

文章目录 引言链式法则误差逆传播加法的逆传播乘法的逆传播逆传播求梯度 SoftmaxWithLoss 层正向传播逆传播代码实现参考 结语 引言 我们知道训练神经网络模型的核心是以损失函数为基准来调整优化网络参数&#xff0c;使得网络的输出尽可能接近真实标签。在神经网络中&#xf…

关于区块链的安全和隐私

背景 区块链技术在近年来发展迅速&#xff0c;被认为是安全计算的突破&#xff0c;但其安全和隐私问题在不同应用中的部署仍处于争论焦点。 目的 对区块链的安全和隐私进行全面综述&#xff0c;帮助读者深入了解区块链的相关概念、属性、技术和系统。 结构 首先介绍区块链…

Python酷库之旅-第三方库Pandas(124)

目录 一、用法精讲 551、pandas.DataFrame.notna方法 551-1、语法 551-2、参数 551-3、功能 551-4、返回值 551-5、说明 551-6、用法 551-6-1、数据准备 551-6-2、代码示例 551-6-3、结果输出 552、pandas.DataFrame.notnull方法 552-1、语法 552-2、参数 552-3…

BitSet-解决数据压缩问题

一、问题引入 假设QQ音乐服务器上有9000万首音乐&#xff0c;用户按照歌名来搜索歌曲&#xff0c;如何使得满足这一需求所需的数据占用的内存空间最小以及用户搜索歌曲速度更快 二、分析问题 1、为了满足使得数据占用的内存更小&#xff0c;可以采用映射的思路&#xff0c;按…

项目实战bug修复

实操bug修复记录 左侧侧边栏切换&#xff0c;再次切换侧边栏&#xff0c;右侧未从顶部初始位置展示。地图定位展示&#xff0c;可跳转到设置的对应位置。一个页面多个el-dialog弹出框导致渲染层级出现问题。锚点滚动定位错位问题。动态类名绑定。el-tree树形通过 draggable 属性…

Linux 进程与进程状态

目录 1.进程。 1.进程的概念 2.并行和并发 3.并行和并发的区别&#xff1a; 4.PCB&#xff08;程序控制块&#xff09; 5.进程组与会话。 6.进程状态。 1.进程。 1.进程的概念 进程是操作系统进行资源分配和调度的一个独立单位。每个进程都运行在操作系统的控制之下&…

游戏化在电子课程中的作用:提高参与度和学习成果

游戏化&#xff0c;即游戏设计元素在非游戏环境中的应用&#xff0c;已成为电子学习领域的强大工具。通过将积分、徽章、排行榜和挑战等游戏机制整合到教育内容中&#xff0c;电子课程可以变得更具吸引力、激励性和有效性。以下是游戏化如何在转变电子学习中发挥重要作用&#…

git命令将已经commit的代码push到其他分支

文章目录 一&#xff1a;对于多分支的代码库&#xff0c;将提交记录从一个分支转移到另一个分支是常见需求方法1&#xff1a;撤销commit操作方法2&#xff1a;实用命令git cherry-pick 来移动commit 二、不小心revert导致代码消失的问题 一&#xff1a;对于多分支的代码库&…

U8集成网页开发的数据查询(二)

前言 根据上一篇的开发&#xff0c;最近又做了一些单据查询的开发。 效果展示图片 结语 目前网页查询已经完善功能&#xff1a; 1.与U8的账号密码保持一致&#xff0c;定时从U8同步账号密码。 2.角色管理&#xff0c;权限分配。 3.U8基础档案数据查询&#xff08;示例&#…

828华为云征文 | 解锁企业级邮件服务,在华为云Flexus x实例上部署Mailcow开源方案

前言 华为云Flexus X实例携手Mailcow开源邮件方案&#xff0c;为企业打造了一个既高效又安全的邮件服务解决方案。Flexus X实例的柔性算力与高性能&#xff0c;是这一方案的坚实基石。它提供CPU内存的灵活定义&#xff0c;以经济型价格实现旗舰级性能&#xff0c;确保邮件服务的…

实例讲解电动汽车故障分级处理策略及Simulink建模方法

电动汽车的故障有很多种&#xff0c;每种故障发生时产生危害性是不同的&#xff0c;因此对于不同故障应采取不同的处理方式。目前一般有两种故障处理方式&#xff0c;一种是针对每一种故障对其故障危害性进行判断&#xff0c;然后针对不同故障设定不同的故障处理机制&#xff1…

day-59 四数之和

思路 双指针&#xff1a;类似16. 最接近的三数之和&#xff0c;将数组排序后&#xff0c;只需要枚举第一个数&#xff0c;则会变为与第16题相似的解题思路 解题过程 枚举选取的第一个数&#xff0c;0<i<len-3,然后就是第16题的解题思路 Code class Solution {public L…