【Elasticsearch系列十九】评分机制详解

news2024/11/15 15:33:42

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
img

  • 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老
  • 导航
    • 檀越剑指大厂系列:全面总结 java 核心技术,jvm,并发编程 redis,kafka,Spring,微服务等
    • 常用开发工具系列:常用的开发工具,IDEA,Mac,Alfred,Git,typora 等
    • 数据库系列:详细总结了常用数据库 mysql 技术点,以及工作中遇到的 mysql 问题等
    • 新空间代码工作室:提供各种软件服务,承接各种毕业设计,毕业论文等
    • 懒人运维系列:总结好用的命令,解放双手不香吗?能用一个命令完成绝不用两个操作
    • 数据结构与算法系列:总结数据结构和算法,不同类型针对性训练,提升编程思维,剑指大厂

非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨

博客目录

      • 1.评分机制 TF\IDF
      • 2.score 是如何被计算出来的
      • 3.分析如何被匹配上
      • 4.Doc value
      • 5.query phase
      • 6.replica shard 提升吞吐量
      • 7.fetch phbase 工作流程
      • 8.搜索参数小总结
      • 9.bucket 和 metric

1.评分机制 TF\IDF

TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于信息检索和文本挖掘的统计方法,用以评估一个词在一个文档集中一个特定文档的重要程度。这个评分机制考虑了一个词语在特定文档中的出现频率(Term Frequency,TF)和在整个文档集中的逆文档频率(Inverse Document Frequency,IDF)。

TF(Term Frequency)词频(Term Frequency,TF)表示一个词在一个特定文档中出现的频率。这通常是该词在文档中出现次数与文档的总词数之比。

IDF(Inverse Document Frequency)逆文档频率(Inverse Document Frequency,IDF)是一个词在文档集中的重要性的度量。如果一个词很常见,出现在很多文档中(例如“和”,“是”等),那么它可能不会携带有用的信息。IDF 度量就是为了降低这些常见词在文档相似性度量中的权重。

2.score 是如何被计算出来的

image-20230514003034221

GET /book/_search?explain=true
{
  "query": {
    "match": {
      "description": "java程序员"
    }
  }
}

返回

{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 2,
      "relation": "eq"
    },
    "max_score": 2.137549,
    "hits": [
      {
        "_shard": "[book][0]",
        "_node": "MDA45-r6SUGJ0ZyqyhTINA",
        "_index": "book",
        "_type": "_doc",
        "_id": "3",
        "_score": 2.137549,
        "_source": {
          "name": "spring开发基础",
          "description": "spring 在java领域非常流行,java程序员都在用。",
          "studymodel": "201001",
          "price": 88.6,
          "timestamp": "2019-08-24 19:11:35",
          "pic": "group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg",
          "tags": ["spring", "java"]
        },
        "_explanation": {
          "value": 2.137549,
          "description": "sum of:",
          "details": [
            {
              "value": 0.7936629,
              "description": "weight(description:java in 0) [PerFieldSimilarity], result of:",
              "details": [
                {
                  "value": 0.7936629,
                  "description": "score(freq=2.0), product of:",
                  "details": [
                    {
                      "value": 2.2,
                      "description": "boost",
                      "details": []
                    },
                    {
                      "value": 0.47000363,
                      "description": "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                      "details": [
                        {
                          "value": 2,
                          "description": "n, number of documents containing term",
                          "details": []
                        },
                        {
                          "value": 3,
                          "description": "N, total number of documents with field",
                          "details": []
                        }
                      ]
                    },
                    {
                      "value": 0.7675597,
                      "description": "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                      "details": [
                        {
                          "value": 2.0,
                          "description": "freq, occurrences of term within document",
                          "details": []
                        },
                        {
                          "value": 1.2,
                          "description": "k1, term saturation parameter",
                          "details": []
                        },
                        {
                          "value": 0.75,
                          "description": "b, length normalization parameter",
                          "details": []
                        },
                        {
                          "value": 12.0,
                          "description": "dl, length of field",
                          "details": []
                        },
                        {
                          "value": 35.333332,
                          "description": "avgdl, average length of field",
                          "details": []
                        }
                      ]
                    }
                  ]
                }
              ]
            },
            {
              "value": 1.3438859,
              "description": "weight(description:程序员 in 0) [PerFieldSimilarity], result of:",
              "details": [
                {
                  "value": 1.3438859,
                  "description": "score(freq=1.0), product of:",
                  "details": [
                    {
                      "value": 2.2,
                      "description": "boost",
                      "details": []
                    },
                    {
                      "value": 0.98082924,
                      "description": "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                      "details": [
                        {
                          "value": 1,
                          "description": "n, number of documents containing term",
                          "details": []
                        },
                        {
                          "value": 3,
                          "description": "N, total number of documents with field",
                          "details": []
                        }
                      ]
                    },
                    {
                      "value": 0.6227967,
                      "description": "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                      "details": [
                        {
                          "value": 1.0,
                          "description": "freq, occurrences of term within document",
                          "details": []
                        },
                        {
                          "value": 1.2,
                          "description": "k1, term saturation parameter",
                          "details": []
                        },
                        {
                          "value": 0.75,
                          "description": "b, length normalization parameter",
                          "details": []
                        },
                        {
                          "value": 12.0,
                          "description": "dl, length of field",
                          "details": []
                        },
                        {
                          "value": 35.333332,
                          "description": "avgdl, average length of field",
                          "details": []
                        }
                      ]
                    }
                  ]
                }
              ]
            }
          ]
        }
      },
      {
        "_shard": "[book][0]",
        "_node": "MDA45-r6SUGJ0ZyqyhTINA",
        "_index": "book",
        "_type": "_doc",
        "_id": "2",
        "_score": 0.57961315,
        "_source": {
          "name": "java编程思想",
          "description": "java语言是世界第一编程语言,在软件开发领域使用人数最多。",
          "studymodel": "201001",
          "price": 68.6,
          "timestamp": "2019-08-25 19:11:35",
          "pic": "group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg",
          "tags": ["java", "dev"]
        },
        "_explanation": {
          "value": 0.57961315,
          "description": "sum of:",
          "details": [
            {
              "value": 0.57961315,
              "description": "weight(description:java in 0) [PerFieldSimilarity], result of:",
              "details": [
                {
                  "value": 0.57961315,
                  "description": "score(freq=1.0), product of:",
                  "details": [
                    {
                      "value": 2.2,
                      "description": "boost",
                      "details": []
                    },
                    {
                      "value": 0.47000363,
                      "description": "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                      "details": [
                        {
                          "value": 2,
                          "description": "n, number of documents containing term",
                          "details": []
                        },
                        {
                          "value": 3,
                          "description": "N, total number of documents with field",
                          "details": []
                        }
                      ]
                    },
                    {
                      "value": 0.56055,
                      "description": "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                      "details": [
                        {
                          "value": 1.0,
                          "description": "freq, occurrences of term within document",
                          "details": []
                        },
                        {
                          "value": 1.2,
                          "description": "k1, term saturation parameter",
                          "details": []
                        },
                        {
                          "value": 0.75,
                          "description": "b, length normalization parameter",
                          "details": []
                        },
                        {
                          "value": 19.0,
                          "description": "dl, length of field",
                          "details": []
                        },
                        {
                          "value": 35.333332,
                          "description": "avgdl, average length of field",
                          "details": []
                        }
                      ]
                    }
                  ]
                }
              ]
            }
          ]
        }
      }
    ]
  }
}

3.分析如何被匹配上

分析一个 document 是如何被匹配上的

  • 最终得分
  • IDF 得分
GET /book/_explain/3
{
  "query": {
    "match": {
      "description": "java程序员"
    }
  }
}

image-20230514003234269

4.Doc value

搜索的时候,要依靠倒排索引;排序的时候,需要依靠正排索引,看到每个 document 的每个 field,然后进行排序,所谓的正排索引,其实就是 doc values

在建立索引的时候,一方面会建立倒排索引,以供搜索用;一方面会建立正排索引,也就是 doc values,以供排序,聚合,过滤等操作使用

doc values 是被保存在磁盘上的,此时如果内存足够,os 会自动将其缓存在内存中,性能还是会很高;如果内存不足够,os 会将其写入磁盘上

倒排索引

doc1: hello world you and me

doc2: hi, world, how are you

termdoc1doc2
hello*
world**
you**
and*
me*
hi*
how*
are*

搜索时:

hello you --> hello, you

hello --> doc1

you --> doc1,doc2

doc1: hello world you and me

doc2: hi, world, how are you

sort by 出现问题

正排索引

doc1: { “name”: “jack”, “age”: 27 }

doc2: { “name”: “tom”, “age”: 30 }

documentnameage
doc1jack27
doc2tom30

5.query phase

  1. 搜索请求发送到某一个 coordinate node,构构建一个 priority queue,长度以 paging 操作 from 和 size 为准,默认为 10

  2. coordinate node 将请求转发到所有 shard,每个 shard 本地搜索,并构建一个本地的 priority queue

  3. 各个 shard 将自己的 priority queue 返回给 coordinate node,并构建一个全局的 priority queue

6.replica shard 提升吞吐量

replica shard 如何提升搜索吞吐量

一次请求要打到所有 shard 的一个 replica/primary 上去,如果每个 shard 都有多个 replica,那么同时并发过来的搜索请求可以同时打到其他的 replica 上去

7.fetch phbase 工作流程

  1. coordinate node 构建完 priority queue 之后,就发送 mget 请求去所有 shard 上获取对应的 document

  2. 各个 shard 将 document 返回给 coordinate node

  3. coordinate node 将合并后的 document 结果返回给 client 客户端

一般搜索,如果不加 from 和 size,就默认搜索前 10 条,按照_score 排序

8.搜索参数小总结

preference:

决定了哪些 shard 会被用来执行搜索操作

_primary, _primary_first, _local, _only_node:xyz, _prefer_node:xyz, _shards:2,3

bouncing results 问题,两个 document 排序,field 值相同;不同的 shard 上,可能排序不同;每次请求轮询打到不同的 replica shard 上;每次页面上看到的搜索结果的排序都不一样。这就是 bouncing result,也就是跳跃的结果。

搜索的时候,是轮询将搜索请求发送到每一个 replica shard(primary shard),但是在不同的 shard 上,可能 document 的排序不同

解决方案就是将 preference 设置为一个字符串,比如说 user_id,让每个 user 每次搜索的时候,都使用同一个 replica shard 去执行,就不会看到 bouncing results 了

timeout:

主要就是限定在一定时间内,将部分获取到的数据直接返回,避免查询耗时过长

routing:

document 文档路由,_id 路由,routing=user_id,这样的话可以让同一个 user 对应的数据到一个 shard 上去

search_type:

default:query_then_fetch

dfs_query_then_fetch,可以提升 revelance sort 精准度

9.bucket 和 metric

bucket:一个数据分组

city name
北京 张三
北京 李四
天津 王五
天津 赵六

天津 王麻子

划分出来两个 bucket,一个是北京 bucket,一个是天津 bucket
北京 bucket:包含了 2 个人,张三,李四
上海 bucket:包含了 3 个人,王五,赵六,王麻子

metric:对一个数据分组执行的统计

metric,就是对一个 bucket 执行的某种聚合分析的操作,比如说求平均值,求最大值,求最小值

select count(*) from book group by studymodel
  • bucket:group by studymodel --> 那些 studymodel 相同的数据,就会被划分到一个 bucket 中
  • metric:count(*),对每个 user_id bucket 中所有的数据,计算一个数量。还有 avg(),sum(),max(),min()

觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄

💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍

🔥🔥🔥Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙

img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2155509.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mapper核心配置文件

文章目录 environment 数据库环境typeAlias 起别名 environment 数据库环境 typeAlias 起别名

【QGIS入门实战精品教程】6.2:QGIS选择要素的多种方法

本文讲解QGIS中选择要素的多种方法。 文章目录 一、选择要素二、多边形选择三、自由手绘四、按半径选择五、按值选择要素六、按表达式选择在QGIS中,选择要素有多种方法,如下所示: 下面举例说明。 一、选择要素 可以直接点选、框选实现单个或者多个点线面要素的选择(按住C…

【计算机网络 - 基础问题】每日 3 题(十八)

✍个人博客:Pandaconda-CSDN博客 📣专栏地址:http://t.csdnimg.cn/fYaBd 📚专栏简介:在这个专栏中,我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话,欢迎点赞👍收藏&…

计算机毕业设计公交站点线路查询网站登录注册搜索站点线路车次/springboot/javaWEB/J2EE/MYSQL数据库/vue前后分离小程序

选题背景‌: 随着城市化进程的加快,公共交通成为城市居民出行的重要方式。然而,传统的公交站点线路查询方式往往依赖于纸质地图或简单的电子显示屏,查询效率低下且信息更新不及时。因此,开发一个功能全面、易于使用的…

某建筑市场爬虫数据采集逆向分析

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 目标网站 aHR0cHM6Ly9qenNjLm1vaHVyZC5nb3YuY24vZGF0YS9jb21wYW55P2NvbXBsZXhuYW1lPSVFNiVCMCVCNA 提示:以下是本篇文章正文内容,下面…

MySQL中的逻辑条件

逻辑条件组合两个比较条件的结果来产生一个基于这些条件的单个的结果,或者逆转一个单个条件的结果。当所有条件的结果为真时,返回行。 SQL的三个逻辑运算符是: AND、OR、NOT 可以在WHERE子句中用AND和OR运算符使用多个条件。 示例一&#…

【计组】数据的表示与运算

【计组】数据的表示与运算 一、数据的表示方法和转换 1、真值 二进制数和十进制数一样有正负之分,书写时加上“”或“-”来表示的,叫做真值。 例:十进制的3和-6,二进制的011和-110都是真值。 2、机器数 机器数采用二进制的0表…

最优化理论与自动驾驶(十一):基于iLQR的自动驾驶轨迹跟踪算法(c++和python版本)

最优化理论与自动驾驶(四):iLQR原理、公式及代码演示 之前的章节我们介绍过,iLQR(迭代线性二次调节器)是一种用于求解非线性系统最优控制最优控制最优控制和规划问题的算法。本章节介绍采用iLQR算法对设定…

Cpp类和对象(中)(4)

文章目录 前言一、类的六个默认成员函数二、构造函数构造函数的概念构造函数的特性构造函数的两种分类编译器默认生成构造函数意义及相关问题C11打的补丁 三、析构函数析构函数的概念析构函数的特性验证是否会自动调用析构函数验证析构函数对于内置与自定义类型处理验证先定义后…

【学习笔记】数据结构(六 ②)

树和二叉树(二) 文章目录 树和二叉树(二)6.3.2 线索二叉树 6.4 树和森林6.4.1 树的存储结构6.4.2 森林与二叉树的转换6.4.3 树和森林的遍历 6.5 树与等价问题6.5.1 等价定义6.5.2 划分等价类的方法6.5.3 划分等价类的具体操作 - 并…

【LeetCode热题100】位运算

这篇博客先介绍了常见位运算操作,然后记录了关于位运算的几道题,包括判定字符是否唯一、丢失的数字、两整数之和、只出现一次的数字2、消失的两个数字。 在这一部分,我们不妨先来总结一下常见位运算操作: 1.基础位运算 >>…

vite 使用飞行器仪表示例

这里写自定义目录标题 环境vue代码效果图 环境 jquery npm install -S jqueryjQuery-Flight-Indicators 将img、css、js拷贝到vite工程目录中 打开 jquery.flightindicators.js&#xff0c;在文件开头加上import jQuery from "jquery"; vue代码 <template>&…

C#(.NET FrameWork库)逆向基础流程(纯小白教程)

一&#xff0c;例题链接 限时题目&#xff0c;只能用网盘来分享了&#xff0c;侵权联系删->百度网盘 请输入提取码 二&#xff0c;文件特征 使用工具查看文件信息&#xff0c; 能看到分析出文件编写语言为C#&#xff0c;使用了.NET库 三&#xff0c;做题流程 &#xff08…

浙版传媒思迈特软件大数据分析管理平台建设项目正式启动

近日&#xff0c;思迈特软件与出版发行及电商书城领域的领军企业——浙江出版传媒股份有限公司&#xff0c;正式启动大近日&#xff0c;思迈特软件与出版发行及电商书城领域的领军企业——浙江出版传媒股份有限公司&#xff0c;正式启动大数据分析管理平台建设项目。浙版传媒相…

Java之继承1

1. 继承 1.1 为什么要继承 在Java中我们定义猫类和狗类&#xff0c;如下 public class Cat {public String name;public int age;public String color;public void eat(){System.out.println(name "正在吃饭");}public void sleep(){System.out.println(name &qu…

基于pytorch本地部署微调bert模型(yelp文本分类数据集)

项目介绍 本项目使用hugging face上提供的Bert模型API&#xff0c;基于yelp数据集&#xff0c;在本地部署微调Bert模型&#xff0c;官方的文档链接为https://huggingface.co/docs/transformers/quicktour&#xff0c;但是在官方介绍中出现了太多的API调用接口&#xff0c;无法…

React 中的延迟加载

延迟加载是 Web 开发中的一种有效的性能优化技术&#xff0c;尤其是对于 React 等库和框架。它涉及仅在需要时加载组件或资源&#xff0c;无论是响应用户操作还是当元素即将在屏幕上显示时。这可以减少应用程序的初始加载时间&#xff0c;减少资源消耗&#xff0c;并改善用户体…

ETLCloud:新一代ETL数据抽取工具的定义与革新

数据集成、数据治理已经成为推动企业数字化转型的核心动力&#xff0c;现在的企业比任何时候都需要一个更为强大的新一代数据集成工具来处理、整合并转化多种数据源。 而ETL&#xff08;数据提取、转换、加载&#xff09;作为数据管理的关键步骤&#xff0c;已在企业数据架构中…

串口助手的qt实现思路

要求实现如下功能&#xff1a; 获取串口号&#xff1a; foreach (const QSerialPortInfo &serialPortInfo, QSerialPortInfo::availablePorts()) {qDebug() << "Port: " << serialPortInfo.portName(); // e.g. "COM1"qDebug() <<…

【JavaEE】——线程的安全问题和解决方式

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯&#xff0c;你们的点赞收藏是我前进最大的动力&#xff01;&#xff01;希望本文内容能够帮助到你&#xff01; 目录 一&#xff1a;问题引入 二&#xff1a;问题深入 1&#xff1a;举例说明 2&#xff1a;图解双线程计算…