八股文-多线程、并发

news2024/9/21 5:51:29

八股文-多线程、并发

最近学到了一种方法,可以用于简历项目经验编写以及面试题目的回答

STAR法则:在什么背景下,你需要解决什么问题,你做了啥,得到了什么结果
情境(Situation): 描述你面对的特定情境或背景。
任务(Task): 说明你面临的具体任务或挑战。
行动(Action): 阐述你采取了什么行动来解决问题或完成任务。
结果(Result): 指出你的行动带来了什么结果,以及你取得了什么成就。
参考:https://blog.csdn.net/qq_37037348/article/details/139144523

多线程是啥?为啥要有多线程?

在单个程序中可以同时运行多个线程执行不同的任务。学习了一个操作系统上面运行多个进程的方法,一个进程上面用多个线程管理。计算机最早出现的时候还没有操作系统,程序直接运行在计算机上,这样一个计算机的功能有限,资源利用率也不高。所以就出现了操作系统,通过进程的方式实现一个计算机可以同时运行多个程序,同时一个程序里面又需要处理多种任务,如果所以任务用一个线程来执行,那么多个任务只能排队处理,同样效率低下,无法好好的利用资源(内存、磁盘IO、CPU等)。
并行处理、充分利用资源 → 提高性能和效率、改善用户体验

使用多线程带来的问题?

线程安全问题(一致性问题)、死锁(相互等待)、资源争抢(CPU时间、内存、I/O)、编程复杂、可见性(内存分为工作内存和主内存,这样做主要是为了提高效率)、有序性问题(指令重排)

怎么解决这些问题?

同步机制(volatile、synchronized、原子类、Lock显式锁)

指令重排是什么?为啥要指令重排?

编译器或者处理器对指令执行顺序进行调整,为了提高执行效率。对于重排的指令会遵循以下原则:不影响单线程执行的语义。但是多线程就不能够保证了(会出现可见性问题、有序性问题)。多线程下正常执行语句也不能够保证原子性,所以基于这两种场景,为了保证并发安全性,就出现了锁和其他的一些机制。主要包括volatile,synchronized,显式锁,原子类等

解决指令重排的方法:
Java提供了一些机制来解决指令重排带来的问题:

volatile关键字:通过使用volatile关键字,可以确保变量的读写操作对所有线程都是可见的,并且保证操作的有序性。volatile变量的写操作对任意后续的volatile变量的读操作都是可见的。(内存屏障阻止重排序,https://juejin.cn/post/6901283327160877063)

synchronized关键字:使用synchronized可以确保同一时间只有一个线程可以执行同步代码块,从而保证操作的原子性和有序性。

final关键字:对于final字段,一旦初始化完成,其值就不会被改变。这可以确保在构造函数中对final字段的赋值在构造函数结束后对其他线程是可见的。

原子类:Java提供了一系列的原子类(如AtomicInteger),这些类利用CAS(Compare-And-Swap)操作来保证操作的原子性,从而避免指令重排的问题。

指令重排为啥能够提高执行效率?

这个就是编译器和处理器做的一些优化,主要原则是提高各个硬件(CPU、内存、寄存器)的利用率,减少空闲时间

volatile是啥?有什么用?

这个就得说到JMM,Java内存模型(Java Memory Model,简称JMM)。内存模型把内存分为线程工作内存和主内存。加了volatile修饰的变量就会直接利用本地内存,这样多个线程set操作会直接从线程内存同步到主内存,get操作会直接从主内存同步到线程内存。
JMM的三个核心特性包括:

可见性:确保一个线程对共享变量的修改能够及时地被其他线程观察到。例如,使用volatile关键字修饰的变量,可以保证对该变量的读写操作对所有线程都是即时可见的。

原子性:确保操作是不可分割的,即当一个线程执行原子操作时,其他线程不能插入执行其他操作。Java中的原子操作包括对基本数据类型的赋值操作,以及synchronized块或方法。

有序性:JMM通过happens-before关系来确保操作的有序性。如果一个操作A happens-before 操作B,那么在执行操作B之前,操作A的结果已经对操作B可见,且操作A的执行顺序在操作B之前。

指令重排序破坏了可见性和有序性。
参考:https://www.jianshu.com/p/a67dc1c11088
双层校验锁:https://www.jianshu.com/p/c6a42c543abf

线程的生命周期

https://www.jianshu.com/p/c22ff5cc4a8f
在这里插入图片描述

synchronized底层实现?锁升级?

https://blog.csdn.net/qq_32907195/article/details/108906260
https://blog.csdn.net/m0_69519887/article/details/138546440
https://xiaolincoding.com/interview/juc.html#synchronized%E5%92%8Creentrantlock%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8%E5%9C%BA%E6%99%AF
https://blog.csdn.net/zhouzhenghu123/article/details/140086311
https://cloud.tencent.com/developer/article/1911691
利用对象实现锁,每个对象都有一个相关联的监视器(monitor),监视器有4个重要的变量,计数器、当前线程,waitSet和entryList。
在这里插入图片描述

在这里插入图片描述
JDK 1.6 之前,synchronized 是重量级锁。JDK 1.6 之前,synchronized 是重量级锁,为了优化,就有了锁升级
在这里插入图片描述
处理锁升级还有其他优化手段,锁消除、锁粗化、锁自旋。
synchronized 核心优化方案主要包含以下 4 个:

锁膨胀:synchronized 从无锁升级到偏向锁,再到轻量级锁,最后到重量级锁的过程,它叫做锁膨胀也叫做锁升级。JDK 1.6 之前,synchronized 是重量级锁,也就是说 synchronized 在释放和获取锁时都会从用户态转换成内核态,而转换的效率是比较低的。但有了锁膨胀机制之后,synchronized 的状态就多了无锁、偏向锁以及轻量级锁了,这时候在进行并发操作时,大部分的场景都不需要用户态到内核态的转换了,这样就大幅的提升了 synchronized 的性能

锁消除:指的是在某些情况下,JVM 虚拟机如果检测不到某段代码被共享和竞争的可能性,就会将这段代码所属的同步锁消除掉,从而到底提高程序性能的目的。(比如单线程使用某些线程安全的容器,有可能不会加锁;实现是JIT 即时编译时,通过对运行上下文的扫描,经过逃逸分析,去除不可能存在共享资源竞争的锁,通过这种方式消除没有必要的锁,可以节省毫无意义的请求锁时间)

锁粗化:将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁。(加锁解锁也需要消耗资源)

自适应自旋锁:指通过自身循环,尝试获取锁的一种方式,优点在于它避免一些线程的挂起和恢复操作,因为挂起线程和恢复线程都需要从用户态转入内核态,这个过程是比较慢的,所以通过自旋的方式可以一定程度上避免线程挂起和恢复所造成的性能开销。

内核态和用户态

https://www.jianshu.com/p/011f4062d372
用户态和内核态是程序运行的两种状态,
线程调度部分操作底层也会依赖操作系统,比如重量级锁,会依赖操作系统的。这个时候就相当于从用户态切换到内核态,然后获取到锁,又会切回来,这个过程是耗时操作。轻量级锁都是在用户态直接完成,不用惊动操作系统,是一种优化手段。
JVM对于os kernel来说呢就相当于是一个普通的应用程序,那么你想申请一把锁,对线程进行调度。实现这件事的时候需要向操作系统内核申请,操作系统内核帮你管理这些线程,管理好了之后反馈给你。这个过程简单来说就是 从用户态到内核态的访问,访问完了由内核态再反馈回来,这个就叫重量级锁。

逃逸分析

https://blog.csdn.net/sky15256567734/article/details/106786870
逃逸分析(Escape Analysis)是编译器优化技术中的一种,它用于分析对象的作用域,判断对象是否在方法中创建后,被外部方法所引用或者作为参数传递到其他方法中。基于这种分析,编译器可以进行一些优化,比如:

栈上分配:如果一个对象不会逃逸到方法之外,那么编译器可以将这个对象的内存分配从堆内存转移到栈内存。由于栈内存的分配和回收速度通常比堆内存快,这样可以提高程序的运行效率。

同步省略:如果一个对象不会被其他线程访问,即不会逃逸到线程之外,那么编译器可以省略对这个对象的同步操作,从而提高性能。

标量替换:对于不会逃逸的对象,如果其内部状态不需要封装在对象中,编译器可以将其替换为基本类型的集合,即标量。这样可以减少内存分配和提高缓存的局部性。

死代码消除:如果分析出某些代码路径不会执行,编译器可以将其优化掉。

在Java中,逃逸分析对于实现即时编译器(JIT)中的优化至关重要,尤其是在运行时编译的环境下,如HotSpot虚拟机。通过逃逸分析,JIT编译器能够在运行时决定是否可以应用上述优化。

需要注意的是,逃逸分析并不是在所有的场景下都能带来性能提升,有时候过度优化可能会导致代码膨胀,甚至因为优化错误而引入bug。因此,编译器在进行逃逸分析时需要权衡优化的收益和风险。

synchronized 和 lock的区别

可中断锁

https://blog.csdn.net/m0_50116974/article/details/140164578

怎么使用多线程?

继承Thread、实现Runnable接口、实现Callable接口(可以根据FutureTask拿到返回结果)、线程池
参考:
https://zhuanlan.zhihu.com/p/334737925
https://www.cnblogs.com/java1024/p/11950129.html
https://blog.csdn.net/weixin_44797490/article/details/91006241

线程池怎么用?原理?执行流程是咋样的?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2151388.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python用TOPSIS熵权法重构粮食系统及期刊指标权重多属性决策MCDM研究|附数据代码...

原文链接:https://tecdat.cn/?p37724 在当今世界,粮食系统的稳定性至关重要。尽管现有的全球粮食系统在生产和分配方面表现出较高的效率,但仍存在大量人口遭受饥饿以及诸多粮食安全隐患。与此同时,在学术领域,准确评估…

JDK如何下载源码?

文章目录 JDK如何下载源码?JDK源码介绍下载JDK源码idea配置源码路径 JDK如何下载源码? JDK(Java Development Kit)是开发Java应用程序的基础工具包,包含了编译、运行和调试Java应用程序所需的所有工具。JDK源码主要指…

notepad++的json查看

json文件查看 因为接触到3dtile模型,所以经常需要和json打交道,但是很多模型是下面这种情况,不好阅读,所以可以使用notepad的插件查看 正常打开是这样的 加载notepad插件 搜索json下载安装就可以了 如果网络抽象,下载…

苹果解锁工具iToolab UnlockGo 中文安装版(附教程+补丁) 2024年6月ios17.4.1可用(记得点赞)解压密码请看文章!!! 评论区获取最新链接

UnlockGo 允许您非常轻松地绕过 iPhone 的密码并获得对设备的完全访问权限。它在以下场景中很有用。 在几分钟内删除 iPhone/iPad 上的各种锁定。 解锁 4 位/6 位密码、Touch ID 和 Face ID 删除没有密码的 iCloud 免费锁 无需密码即可从 iPhone/iPad/iPod 中删除 Apple ID…

手写Spring

简单实现Spring基于注解配置 ComponentScan Target(ElementType.TYPE) Retention(RetentionPolicy.RUNTIME) public interface ComponentScan {String value() default ""; } 相当于component-scan HspSpringConfig ComponentScan(value "spring.write.com…

初始泛型【超级详细哦~】

初始泛型【超级详细哦~】 1、包装类1.1 基本数据类型和对应的包装类1.2 装箱和拆箱1.3 自动装箱和拆箱 2、泛型2.1 什么是泛型2.2 泛型的语法2.3泛型的使用2.4 泛型的上界2.4.1 语法2.4.2 示例 1、包装类 1.1 基本数据类型和对应的包装类 1.2 装箱和拆箱 int i10;//装箱操作&a…

聊聊Thread Local Storage

聊聊ThreadLocal 为什么需要Thread Local StorageThread Local Storage的实现PThread库实现操作系统实现GCC __thread关键字实现C11 thread_local实现JAVA ThreadLocal实现 Thread Local Storage 线程局部存储,简称TLS。 为什么需要Thread Local Storage 变量分为全…

元学习的简单示例

代码功能 模型结构:SimpleModel是一个简单的两层全连接神经网络。 元学习过程:在maml_train函数中,每个任务由支持集和查询集组成。模型先在支持集上进行训练,然后在查询集上进行评估,更新元模型参数。 任务生成&…

STM32G431RBT6(蓝桥杯)串口(发送)

一、基础配置 (1) PA9和PA10就是串口对应在单片机上的端口 注意:一定要先选择PA9的TX和PA10的RX,再去打开异步的模式 (2) 二、查看单片机的端口连接至电脑的哪里 (1)此电脑->右击属性 (2)找到端…

AI视觉算法盒是什么?如何智能化升级网络摄像机,守护全方位安全

在智能化浪潮席卷全球的今天,以其创新技术引领行业变革,推出的集高效、智能、灵活于一体的AI视觉算法盒。这款革命性的产品,旨在通过智能化升级传统网络摄像机,为各行各业提供前所未有的安全监控与智能分析能力,让安全…

SpringCloud构建工程

一、新建数据库和表&#xff0c;并填写测试数据 二、创建父级工程 1、创建maven工程 2、工程名字OfficeAutomation 3、pom.xml文件中添加依赖 <properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><maven.compiler.encodin…

领域驱动DDD三种架构-分层架构、洋葱架构、六边形架构

博主介绍&#xff1a; 大家好&#xff0c;我是Yuperman&#xff0c;互联网宇宙厂经验&#xff0c;17年医疗健康行业的码拉松奔跑者&#xff0c;曾担任技术专家、架构师、研发总监负责和主导多个应用架构。 技术范围&#xff1a; 目前专注java体系&#xff0c;以及golang、.Net、…

第二十节:学习Redis缓存数据库实现增删改查(自学Spring boot 3.x的第五天)

这节记录下如何使用redis缓存数据库。 第一步&#xff1a; 先在服务器端安装redis&#xff0c; 下载地址&#xff1a;Releases tporadowski/redis GitHub。 第二步&#xff1a; 安装redis客户端可视化管理软件redisDesktopmanager Redis Desktop Manager - Download 第…

GAMES101(13节Ray Tracing)

Ray Tracing 基本原理&#xff1a; 我们知道为什么会看到物体的颜色&#xff0c;因为光线照射物体&#xff0c;未被吸收的光线反射到人眼&#xff0c;因此&#xff0c;我们看到的颜色&#xff0c;就是光的一部分&#xff0c;光线追踪就是模拟这个过程 光线假设&#xff1a; …

DHCP协议原理(网络协议)

DHCP简介 定义 DHCP&#xff08;动态主机配置协议&#xff09;是一种网络管理协议&#xff0c;能够自动为局域网中的每台计算机分配IP地址及其他网络配置参数&#xff0c;包括子网掩码、默认网关和DNS服务器等。这一机制极大简化了网络管理&#xff0c;尤其在大型局域网中&am…

聊聊AUTOSAR:基于Vector MICROSAR的TC8测试开发方案

技术背景 车载以太网技术作为汽车智能化和网联化的重要组成部分&#xff0c;正逐步成为现代汽车网络架构的核心&#xff0c;已广泛应用于汽车诊断&#xff08;如OBD&#xff09;、ECU软件更新、智能座舱系统、高清摄像头环视泊车系统等多个领域。 在这个过程中&#xff0c;ET…

CSS 的元素显示模式简单学习

目录 1. 元素显示模式 1.1 概述 1.2 块元素 1.3 行元素 1.4 行内块元素 1.5 元素显示模式总结 2. 元素显示模式转换 3. 单行文字垂直居中 4. 案例演示 1. 元素显示模式 1.1 概述 1.2 块元素 1.3 行元素 1.4 行内块元素 1.5 元素显示模式总结 2. 元素显示模式转换 3. 单…

通过markdown表格批量生成格式化的word教学单元设计表格

素材&#xff1a; 模板&#xff1a; 代码&#xff1a; import pandas as pd from python_docx_replace import docx_replace,docx_get_keys from docx import Document from docxcompose.composer import Composerdef parse_markdown_tables(file_path):with open(file_path,…

DOCKER 数据库管理软件自己开发--———未来之窗行业应用跨平台架构

- 数据异地容灾服务--未来之窗智慧数据服务 DATA REMOTE DISASTER RECOVERY SERVICE -CyberWin Future Docker-数据查看 CyberWin DATA Viewer 1.docker 样式 mysqli://root:密码172.17.0.2:端口/数据库 阿雪技术观 拥抱开源与共享&#xff0c;见证科技进步奇迹&#xff0c;…

AMD小胜!锐龙7 9700X VS. i7- 14700K网游对比

一、前言&#xff1a;两款高端处理器的网游对比测试 半个月前&#xff0c;我们做了锐龙5 9600X与i5-14600K的网游帧率测试&#xff0c;结果有点意外&#xff0c;几款游戏平均下来&#xff0c;锐龙5 9600X比i5-14600K竟然强了19%之多。 今天我们将会对锐龙7 9700X和i7-14700K进行…