近期 Gartner发布了《新兴技术成熟度曲线》,其中生成式 AI (GenAI) 正式进入到了幻灭期。
2018 年 6 月,OpenAI发布GPT-1模型,生成式AI开始向产品化发展。
到2022年的GPT-3.5发布,并且ChatGPT首次向公众推出,一夜之间人工智能崛起之声响彻云霄。
在资本市场上,原本火热的分布式数据库、云数据库瞬间哑火,所有注意力全部集中到生成式AI领域,文生文、文生图、文生视频、数字人、智能助手…
人工智能企业的崛起速度、规模远远超过当初的分布式数据企业。曾经投资几亿美金就能在分布式数据库领域掀起阵阵热潮,然而类似的投资规模在AI领域简直就像是往海面上的鹅毛,荡不起一丝涟漪…
睡了一觉醒来,发现整个世界好像都被贴上了AI的标签,楼下饮水机流出来的都是“AI+”water;各大科技展会中,AI企业、大模型产品、解决方案占据了整片江山,于是有人感叹这个时代是“大模型遍地走,数据库不如狗”…
那时出差在外,高铁上、飞机上、合作伙伴、客户…所有人都在谈论人工智能,各种新闻媒体报道不断,纷纷预测哪些职业将被AI快速替换,打工人到了灭绝的边缘…
然而随着大模型产品的推广使用,很快人们发现当前的技术还远远没有达到其吹嘘的能力。曾经尝试使用某言、某问减轻文章编辑工作,但是发现其生成内容存在两个严重问题,导致根本无法使用:
1,信息幻觉。通用大模型依赖的训练数据集本身质量低、准确性差,导致产出的内容也大多存在失真。
哪怕只有1%的错误信息,但是这也无法应用在一些严谨的场合中,因为我们不确定这错误的1%具体是哪些信息,也就导致整体内容是无价值的。
例如我曾经随便编了几个数据库名字,和真实存在的几个数据产品混在一起,让某大模型“介绍一下这几款数据库”,结果他把这些不存在产品和相对小众不知名的产品,都“安”给了自家公司,并煞有其事的介绍他们的优秀功能、特性…
2,废话连篇。有一段时间用大模型,发现其生成的内容总是遵循一种固定格式,例如“首先…其次…最后…综上所述…”。
格式其实不重要,仅内容也全是类似“问题的关键是解决关键的问题”这种废话,但却远远达不到这句话所展示出的滑稽和幽默效果,总之,就是充斥毫无意义、且平淡的废话。
如今,生成式AI技术从快速上升,达到顶峰,然后又进入幻灭期不过仅用了不到5年的时间,未来能不能达到曾经的预期还需要很长的时间验证。
但要说明的是Gartner模型中的幻灭期(或者叫陷入低谷)并不代表这项技术就不行了,而是其“炒作周期”进入了“陷入低谷”的阶段。
Gartner-技术成熟度模型
新技术从诞生、发展到成熟等不同的阶段周期都是可以预测的,而技术的整个发展过程中有一个关键因素起到了很大作用,就是— 炒作周期(Hype Cycle )。
1995 年, Gartner 就提出了这一观点,并在每年的技术成熟度分析报告中通过 Hype Cycle 来探索、展示某类技术正处于何种阶段。
其中 Hype Cycle(炒作周期) 包括五个阶段:
-
**上升期:**随着技术诞生、突破或产品发布等事件,引起人们的讨论,创新触发的炒作周期就此开始。
-
**顶峰:**随着厂商的营销力度增加,市场期望不断增长,最终达到顶峰(把“牛”吹到了极致,无“牛”可吹了),产品使用量也将快速增加;但此时市场增长的原因更多是因为“炒作因素”在发挥作用,而不是创新技术真的可以满足用户需求。
-
**陷入低谷:**随着用户数量的增加,问题和缺陷被暴露,例如性能和低 ROI (投资回报率),负面口碑增长(超过了宣传、营销的影响),从而导致市场的兴奋感消退,技术开始进入幻灭的低谷。
-
**攀升阶段:**然而,并不是所有的早期用户都在报告缺陷和问题,也有部分用户在展示创新技术应用的价值;并且随着厂商对已发现问题的解决,以及用户使用能力的适应,于是这一技术又从低谷缓步进入攀升阶段。
当某一个技术发展到了这一阶段,如果参与厂商还没有建立稳定、有效的营收规模,那么它很很可能无法应对接下来的市场竞争压力,于是我们会发现头部企业效应产生,并且人才、资源、市场等将变得更加集中。当前的国产数据库技术,应该已经进入到这一阶段。
-
稳定期:最终这一技术在其合适的领域趋近成熟,并得到广泛应用,成为这一领域的主流技术。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓