案例简介
某保险企业面对大数据时代下的业务发展挑战,面临数据查询、分析与探索需求的激增。然而,当前的数据基础设施与应用方式已难以满足业务快速发展的需求。企业面临分析链路长、报表时效性低、制作效率低且灵活度不足、无效报表堆积等困局。为打破这些瓶颈,该企业引入了 Smartbi AIChat, 为保险企业带来了显著的业务价值。通过简单的对话问答,业务人员能够迅速实现数据分析,大大提高了数据应用的灵活性和效率。这不仅降低了报表开发的成本,还极大地方便了领导及业务人员的决策过程,提高了 80% 的用数效率。此外,它赋予了每个用户“增强分析”的能力,使得数据分析的门槛大大降低,让更多非专业数据分析人员也能轻松进行数据分析。这一创新解决方案有效解决了企业数字化经营中的困局,助力企业实现真正的降本增效,是保险行业数字化转型的有力助推剂。
背景和主要驱动力
随着企业信息化深入,数据量激增,数据分析需求日益复杂,该保险企业自主搭建的报表系统面临以下问题和挑战:首先,数据闭环难实现,业务逻辑与数据应用脱节;其次,开发成本高,报表无组件化开发,工作量大且维护成本高;第三,排期时间长,前端开发人员资源紧张,需求响应慢。为提升用数效率,降低数据使用门槛,企业急需引入创新解决方案。Smartbi AIChat 应用能够助力企业快速响应数据需求,推动业务决策数据化、管理化,成为解决当前挑战的理想选择。
行动路线图
- 搭建统一的指标体系。 Smartbi 实施顾问同企业高层沟通对齐,围绕企业战略方向和战略达成情况,形成关键指标和关键事项,利用指标将这些关键事项量化,并分配到相应部门去承接。同时配合采用“自下而上”的方法,收集了该企业当前一线正在使用的报表进行分析,从报表里解读当前关注的核心指标,加入到企业指标体系中;
- 对话式分析与数据直接对话。当拥有一个较好的指标管理体系以后,业务人员已经能够有较为统一的数据口径和业务术语。Smartbi 的实施顾问,将指标模型切分成多个业务关心的主题域的数据模型,用基于对话式分析的查询逐步替代之前采用报表搭建的查询方案,业务用户的大部分查询需求逐步从 IT 人员开发的报表转移到临时的对话式分析查询上。
实施效果
通过使用 Smartbi AIChat,极大方便了领导及业务人员用数决策过程,提高了 80% 用数效率,数据分析门槛大大降低。业务人员通过简单的对话问答实现快速数据分析 , 赋予每个用户 " 增强分析 "的能力。项目应用落地后,既节省报表开发的成本,还能快速辅助支撑决策,助力集团实现真正的降本增效。
实施难度与复杂度
该保险企业由 IT 自主搭建报表系统,随着数据统计、分析需要,明细数据的提取、报表开发等需求和日常数据提取和分析的需求量越来越多。采用 Smartbi AIChat,分析方式发生了一次范式的转移,从以报表为核心,以数据模型为核心,转移到了指标管理结合 AI 对话搜索为核心。
根据大模型 + Smartbi 数据模型 / 指标模型进行框架设计,大模型主要作用于自然语言与 DSL 分析语句的连接与转化,Smartbi 数据模型作为数据存储与查询分析的核心基建。