一、本文介绍
本文记录的是基于MCA注意力模块的YOLOv9目标检测改进方法研究。普通的轴向注意力难以实现长距离交互,不利于捕获分割任务中所需的空间结构或形状,而MCA注意力
模块通过构建了两个并行轴向注意力之间的交互,更有效地利用多尺度特征和全局上下文,在改进YOLOv9的过程中,能够契合目标形态,更有效的获取目标的全局信息。
文章目录
- 一、本文介绍
- 二、MCANet原理
- 2.1 MCA的原理:
- 2.2 MCA的优势:
- 三、MCA的实现代码
- 四、添加步骤
- 4.1 修改common.py
- 4.1.1 基础模块1
- 4.1.2 创新模块2⭐
- 4.2 修改yolo.py
- 五、yaml模型文件
- 5.1 模型改进版本一
- 5.2 模型改进版本二⭐
- 六、成功运行结果
二、MCANet原理
MCANet
:基于多尺度交叉轴关注的医学图像分割
MCANet(Medical Image Segmentation with Multi - Scale Cross - Axis Attention)
是一种用于医学图像分割的网络,其核心组件是多尺度交叉轴注意力(Multi - Scale Cross - Axis Attention,MCA)
。
2.1 MCA的原理:
- 回顾轴向注意力:
- 轴向注意力将自注意力分解为两个部分,分别负责沿水平或垂直维度计算自注意力,基于此,
Axial - DeepLab
可沿水平和垂直方向依次聚合特征,使捕获全局信息成为可能。 - 轴向注意力比自注意力更高效,计算复杂度从 O ( H W × H W ) O(HW \times HW) O(HW×HW)降低到 O ( H W × ( H + W ) ) O(HW \times (H + W)) O(HW×(H+W))。
- 但在许多医学图像分割任务中,数据集相对较小,轴向注意力难以实现长距离交互,不利于捕获分割任务中所需的空间结构或形状。
- 轴向注意力将自注意力分解为两个部分,分别负责沿水平或垂直维度计算自注意力,基于此,
- 多尺度交叉轴注意力:
MCA
结构分为两个并行分支,分别计算水平和垂直轴向注意力,每个分支由三个不同核大小的1D卷积组成,用于沿一个空间维度编码多尺度上下文信息,随后通过交叉轴注意力沿另一个空间维度聚合特征。- 以顶部分支为例,给定特征图 F F F(编码器最后三个阶段特征图的组合),使用三个并行的1D卷积对其进行编码,输出通过求和融合并送入一个 1 × 1 1\times1 1×1卷积,公式为 F x = C o n v 1 × 1 ( ∑ i = 0 2 C o n v 1 D i x ( N o r m ( F ) ) ) F_{x} = Conv_{1\times1}\left(\sum_{i = 0}^{2}Conv1D_{i}^{x}(Norm(F))\right) Fx=Conv1×1(∑i=02Conv1Dix(Norm(F))),其中 C o n v 1 D i x ( ⋅ ) Conv1D_{i}^{x}(\cdot) Conv1Dix(⋅)表示沿 x x x轴维度的1D卷积, N o r m ( ⋅ ) Norm(\cdot) Norm(⋅)是层归一化, F x F_{x} Fx是输出。对于1D卷积的核大小,设置为 1 × 7 1\times7 1×7、 1 × 11 1\times11 1×11和 1 × 21 1\times21 1×21。底部分支的输出 F y F_{y} Fy可通过类似方式得到。
- 对于顶部分支的 F x F_{x} Fx,将其送入 y y y轴注意力,为更好地利用来自两个空间方向的多尺度卷积特征,计算 F x F_{x} Fx和 F y F_{y} Fy之间的交叉注意力,具体将 F x F_{x} Fx作为键和值矩阵, F y F_{y} Fy作为查询矩阵,计算过程为 F T = M H C A y ( F y , F x , F x ) F_{T} = MHCA_{y}(F_{y}, F_{x}, F_{x}) FT=MHCAy(Fy,Fx,Fx),其中 M H C A y ( ⋅ , ⋅ , ⋅ ) MHCA_{y}(\cdot, \cdot, \cdot) MHCAy(⋅,⋅,⋅)表示沿 x x x轴的多头交叉注意力。底部分支以类似方式编码沿 y y y轴方向的上下文,即 F B = M H C A x ( F x , F y , F y ) F_{B} = MHCA_{x}(F_{x}, F_{y}, F_{y}) FB=MHCAx(Fx,Fy,Fy),其中 M H C A x ( ⋅ , ⋅ , ⋅ ) MHCA_{x}(\cdot, \cdot, \cdot) MHCAx(⋅,⋅,⋅)表示沿 y y y轴的多头交叉注意力。
MCA
的输出为 F o u t = C o n v 1 × 1 ( F T ) + C o n v 1 × 1 ( F B ) + F F_{out} = Conv_{1\times1}(F_{T}) + Conv_{1\times1}(F_{B}) + F Fout=Conv1×1(FT)+Conv1×1(FB)+F。
2.2 MCA的优势:
- 引入轻量级多尺度卷积:处理病变区域或器官各种大小和形状的有效方式。
- 创新的注意力机制:与大多数以前的工作不同,
MCA
不直接应用轴向注意力来捕获全局上下文,而是构建两个并行轴向注意力之间的交互,更有效地利用多尺度特征和全局上下文。 - 解码器轻量级:微小型号的模型参数数量仅为 0.14 M 0.14M 0.14M,更适合实际应用场景。
论文:https://arxiv.org/pdf/2312.08866v1
源码:https://github.com/haoshao-nku/medical_seg
三、MCA的实现代码
MCA模块
的实现代码如下:
class StdPool(nn.Module) :
def __init__(self):
super(StdPool, self).__init__()
def forward (self, x):
b, c, _, _ = x.size()
std = x.view(b, c, -1).std(dim=2, keepdim=True)
std = std.reshape(b, c, 1, 1)
return std
class MCAGate (nn.Module):
def __init__(self, k_size, pool_types=['avg', 'std']):
super(MCAGate, self).__init__()
self.pools = nn.ModuleList([])
for pool_type in pool_types:
if pool_type == 'avg':
self.pools.append(nn.AdaptiveAvgPool2d(1))
elif pool_type == 'max':
self.pools.append(nn.AdaptiveMaxPool2d(1))
elif pool_type == 'std':
self.pools.append(StdPool())
else:
raise NotImplementedError
self.conv = nn.Conv2d(1, 1, kernel_size=(1, k_size), stride=1, padding=(0, (k_size - 1) // 2), bias=False)
self.sigmoid = nn.Sigmoid()
self.weight = nn.Parameter(torch.rand(2))
def forward(self, x):
feats = [pool(x) for pool in self.pools]
if len(feats) == 1:
out = feats[0]
elif len(feats) == 2:
weight = torch.sigmoid(self.weight)
out = 1/2*(feats[0] + feats[1]) + weight[0] * feats[0] + weight[1] * feats[1]
else:
assert False, "特征提取异常"
out = out.permute(0, 3, 2, 1).contiguous()
out = self.conv(out)
out = out.permute(0, 3, 2, 1).contiguous()
out = self.sigmoid(out)
out = out.expand_as(x)
return x * out
class MCA(nn.Module):
def __init__(self, channel, no_spatial=False):
"""Constructs a MCA module.
Args:
inp: Number of channels of the input feature maps
no_spatial: whether to build channel dimension interactions
"""
super(MCA, self).__init__()
lambd = 1.5
gamma = 1
temp = round(abs((math.log2(channel) - gamma) / lambd))
kernel = temp if temp % 2 else temp - 1
self.h_cw = MCAGate(3)
self.w_hc = MCAGate(3)
self.no_spatial = no_spatial
if not no_spatial:
self.c_hw = MCAGate(kernel)
def forward(self, x):
x_h = x.permute(0, 2, 1, 3).contiguous()
x_h = self.h_cw(x_h)
x_h = x_h.permute(0, 2, 1, 3).contiguous()
x_w = x.permute(0, 3, 2, 1).contiguous()
x_w = self.w_hc(x_w)
x_w = x_w.permute(0, 3, 2, 1).contiguous()
if not self.no_spatial:
x_c = self.c_hw(x)
x_out = 1 / 3 * (x_c + x_h + x_w)
else:
x_out = 1 / 2 * (x_h + x_w)
return x_out
四、添加步骤
4.1 修改common.py
此处需要修改的文件是models/common.py
common.py中定义了网络结构的通用模块
,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。
4.1.1 基础模块1
模块改进方法1️⃣:直接加入MCA模块
。
MCA模块
添加后如下:
注意❗:在4.2小节
中的yolo.py
文件中需要声明的模块名称为:MCA
。
4.1.2 创新模块2⭐
模块改进方法2️⃣:基于MCA模块
的RepNCSPELAN4
。
相较方法一中的直接插入注意力模块,利用注意力模块对卷积等其他模块进行改进,其新颖程度会更高一些,训练精度可能会表现的更高。
第二种改进方法是对YOLOv9
中的RepNCSPELAN4模块
进行改进,将MCA注意力模块
替换RepNCSPELAN4
中的卷积模块。MCA注意力模块
通过构建了两个并行轴向注意力之间的交互,更有效地利用多尺度特征和全局上下文,在加入到RepNCSPELAN4模块
后,能够更加契合目标形态,更有效的获取目标的全局信息。
改进代码如下:
class MCARepNCSPELAN4(nn.Module):
# csp-elan
def __init__(self, c1, c2, c3, c4, c5=1): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
self.c = c3//2
self.cv1 = Conv(c1, c3, 1, 1)
self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), MCA(c4))
self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), MCA(c4))
self.cv4 = Conv(c3+(2*c4), c2, 1, 1)
def forward(self, x):
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
def forward_split(self, x):
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
注意❗:在4.2小节
中的yolo.py
文件中需要声明的模块名称为:MCARepNCSPELAN4
。
4.2 修改yolo.py
此处需要修改的文件是models/yolo.py
yolo.py用于函数调用
,我们只需要将common.py
中定义的新的模块名添加到parse_model函数
下即可。
MCA模块
以及MCARepNCSPELAN4模块
添加后如下:
五、yaml模型文件
5.1 模型改进版本一
在代码配置完成后,配置模型的YAML文件。
此处以models/detect/yolov9-c.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-MCA.yaml
。
将yolov9-c.yaml
中的内容复制到yolov9-c-MCA.yaml
文件下,修改nc
数量等于自己数据中目标的数量。
在骨干网络的最后一层添加MCA模块
,只需要填入一个参数,通道数。
# YOLOv9
# parameters
nc: 1 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()
# anchors
anchors: 3
# YOLOv9 backbone
backbone:
[
[-1, 1, Silence, []],
# conv down
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
# conv down
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
# elan-1 block
[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 3
# avg-conv down
[-1, 1, ADown, [256]], # 4-P3/8
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 5
# avg-conv down
[-1, 1, ADown, [512]], # 6-P4/16
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 7
# avg-conv down
[-1, 1, ADown, [512]], # 8-P5/32
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 9
[-1, 1, MCA, [512]], # 10 # 注意力添加在此处
]
# YOLOv9 head
head:
[
# elan-spp block
[-1, 1, SPPELAN, [512, 256]], # 10
# up-concat merge
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 7], 1, Concat, [1]], # cat backbone P4
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
# up-concat merge
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 5], 1, Concat, [1]], # cat backbone P3
# elan-2 block
[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
# avg-conv-down merge
[-1, 1, ADown, [256]],
[[-1, 14], 1, Concat, [1]], # cat head P4
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
# avg-conv-down merge
[-1, 1, ADown, [512]],
[[-1, 11], 1, Concat, [1]], # cat head P5
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
# multi-level reversible auxiliary branch
# routing
[5, 1, CBLinear, [[256]]], # 23
[7, 1, CBLinear, [[256, 512]]], # 24
[9, 1, CBLinear, [[256, 512, 512]]], # 25
# conv down
[0, 1, Conv, [64, 3, 2]], # 26-P1/2
# conv down
[-1, 1, Conv, [128, 3, 2]], # 27-P2/4
# elan-1 block
[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
# avg-conv down fuse
[-1, 1, ADown, [256]], # 29-P3/8
[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 30
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
# avg-conv down fuse
[-1, 1, ADown, [512]], # 32-P4/16
[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 33
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
# avg-conv down fuse
[-1, 1, ADown, [512]], # 35-P5/32
[[26, -1], 1, CBFuse, [[2]]], # 36
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
# detection head
# detect
[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
]
5.2 模型改进版本二⭐
此处同样以models/detect/yolov9-c.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-MCARepNCSPELAN4.yaml
。
将yolov9-c.yaml
中的内容复制到yolov9-c-MCARepNCSPELAN4.yaml
文件下,修改nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将骨干网络中的所有RepNCSPELAN4模块
替换成MCARepNCSPELAN4模块
。
# YOLOv9
# parameters
nc: 1 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()
# anchors
anchors: 3
# YOLOv9 backbone
backbone:
[
[-1, 1, Silence, []],
# conv down
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
# conv down
[-1, 1, Conv, [128, 3, 2]], # 2-P2/4
# elan-1 block
[-1, 1, MCARepNCSPELAN4, [256, 128, 64, 1]], # 3
# avg-conv down
[-1, 1, ADown, [256]], # 4-P3/8
# elan-2 block
[-1, 1, MCARepNCSPELAN4, [512, 256, 128, 1]], # 5
# avg-conv down
[-1, 1, ADown, [512]], # 6-P4/16
# elan-2 block
[-1, 1, MCARepNCSPELAN4, [512, 512, 256, 1]], # 7
# avg-conv down
[-1, 1, ADown, [512]], # 8-P5/32
# elan-2 block
[-1, 1, MCARepNCSPELAN4, [512, 512, 256, 1]], # 9
]
# YOLOv9 head
head:
[
# elan-spp block
[-1, 1, SPPELAN, [512, 256]], # 10
# up-concat merge
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 7], 1, Concat, [1]], # cat backbone P4
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 13
# up-concat merge
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 5], 1, Concat, [1]], # cat backbone P3
# elan-2 block
[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]], # 16 (P3/8-small)
# avg-conv-down merge
[-1, 1, ADown, [256]],
[[-1, 13], 1, Concat, [1]], # cat head P4
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 19 (P4/16-medium)
# avg-conv-down merge
[-1, 1, ADown, [512]],
[[-1, 10], 1, Concat, [1]], # cat head P5
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 22 (P5/32-large)
# multi-level reversible auxiliary branch
# routing
[5, 1, CBLinear, [[256]]], # 23
[7, 1, CBLinear, [[256, 512]]], # 24
[9, 1, CBLinear, [[256, 512, 512]]], # 25
# conv down
[0, 1, Conv, [64, 3, 2]], # 26-P1/2
# conv down
[-1, 1, Conv, [128, 3, 2]], # 27-P2/4
# elan-1 block
[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]], # 28
# avg-conv down fuse
[-1, 1, ADown, [256]], # 29-P3/8
[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]], # 31
# avg-conv down fuse
[-1, 1, ADown, [512]], # 32-P4/16
[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 34
# avg-conv down fuse
[-1, 1, ADown, [512]], # 35-P5/32
[[25, -1], 1, CBFuse, [[2]]], # 36
# elan-2 block
[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]], # 37
# detection head
# detect
[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]], # DualDDetect(A3, A4, A5, P3, P4, P5)
]
六、成功运行结果
分别打印网络模型可以看到MCA模块
和MCARepNCSPELAN4
已经加入到模型中,并可以进行训练了。
yolov9-c-MCA:
from n params module arguments
0 -1 1 0 models.common.Silence []
1 -1 1 1856 models.common.Conv [3, 64, 3, 2]
2 -1 1 73984 models.common.Conv [64, 128, 3, 2]
3 -1 1 212864 models.common.RepNCSPELAN4 [128, 256, 128, 64, 1]
4 -1 1 164352 models.common.ADown [256, 256]
5 -1 1 847616 models.common.RepNCSPELAN4 [256, 512, 256, 128, 1]
6 -1 1 656384 models.common.ADown [512, 512]
7 -1 1 2857472 models.common.RepNCSPELAN4 [512, 512, 512, 256, 1]
8 -1 1 656384 models.common.ADown [512, 512]
9 -1 1 2857472 models.common.RepNCSPELAN4 [512, 512, 512, 256, 1]
10 -1 1 10 models.common.MCA [512, 512]
11 -1 1 656896 models.common.SPPELAN [512, 512, 256]
12 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
13 [-1, 7] 1 0 models.common.Concat [1]
14 -1 1 3119616 models.common.RepNCSPELAN4 [1024, 512, 512, 256, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 5] 1 0 models.common.Concat [1]
17 -1 1 912640 models.common.RepNCSPELAN4 [1024, 256, 256, 128, 1]
18 -1 1 164352 models.common.ADown [256, 256]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 2988544 models.common.RepNCSPELAN4 [768, 512, 512, 256, 1]
21 -1 1 656384 models.common.ADown [512, 512]
22 [-1, 11] 1 0 models.common.Concat [1]
23 -1 1 3119616 models.common.RepNCSPELAN4 [1024, 512, 512, 256, 1]
24 5 1 131328 models.common.CBLinear [512, [256]]
25 7 1 393984 models.common.CBLinear [512, [256, 512]]
26 9 1 656640 models.common.CBLinear [512, [256, 512, 512]]
27 0 1 1856 models.common.Conv [3, 64, 3, 2]
28 -1 1 73984 models.common.Conv [64, 128, 3, 2]
29 -1 1 212864 models.common.RepNCSPELAN4 [128, 256, 128, 64, 1]
30 -1 1 164352 models.common.ADown [256, 256]
31 [24, 25, 26, -1] 1 0 models.common.CBFuse [[0, 0, 0]]
32 -1 1 847616 models.common.RepNCSPELAN4 [256, 512, 256, 128, 1]
33 -1 1 656384 models.common.ADown [512, 512]
34 [25, 26, -1] 1 0 models.common.CBFuse [[1, 1]]
35 -1 1 2857472 models.common.RepNCSPELAN4 [512, 512, 512, 256, 1]
36 -1 1 656384 models.common.ADown [512, 512]
37 [26, -1] 1 0 models.common.CBFuse [[2]]
38 -1 1 2857472 models.common.RepNCSPELAN4 [512, 512, 512, 256, 1]
39[32, 35, 38, 17, 20, 23] 1 21542822 DualDDetect [1, [512, 512, 512, 256, 512, 512]]
yolov9-c-MCA summary: 975 layers, 50999600 parameters, 50999568 gradients, 238.9 GFLOPs
yolov9-c-MCARepNCSPELAN4:
from n params module arguments
0 -1 1 0 models.common.Silence []
1 -1 1 1856 models.common.Conv [3, 64, 3, 2]
2 -1 1 73984 models.common.Conv [64, 128, 3, 2]
3 -1 1 138910 models.common.MCARepNCSPELAN4 [128, 256, 128, 64, 1]
4 -1 1 164352 models.common.ADown [256, 256]
5 -1 1 552222 models.common.MCARepNCSPELAN4 [256, 512, 256, 128, 1]
6 -1 1 656384 models.common.ADown [512, 512]
7 -1 1 1676834 models.common.MCARepNCSPELAN4 [512, 512, 512, 256, 1]
8 -1 1 656384 models.common.ADown [512, 512]
9 -1 1 1676834 models.common.MCARepNCSPELAN4 [512, 512, 512, 256, 1]
10 -1 1 656896 models.common.SPPELAN [512, 512, 256]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 7] 1 0 models.common.Concat [1]
13 -1 1 3119616 models.common.RepNCSPELAN4 [1024, 512, 512, 256, 1]
14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 [-1, 5] 1 0 models.common.Concat [1]
16 -1 1 912640 models.common.RepNCSPELAN4 [1024, 256, 256, 128, 1]
17 -1 1 164352 models.common.ADown [256, 256]
18 [-1, 13] 1 0 models.common.Concat [1]
19 -1 1 2988544 models.common.RepNCSPELAN4 [768, 512, 512, 256, 1]
20 -1 1 656384 models.common.ADown [512, 512]
21 [-1, 10] 1 0 models.common.Concat [1]
22 -1 1 3119616 models.common.RepNCSPELAN4 [1024, 512, 512, 256, 1]
23 5 1 131328 models.common.CBLinear [512, [256]]
24 7 1 393984 models.common.CBLinear [512, [256, 512]]
25 9 1 656640 models.common.CBLinear [512, [256, 512, 512]]
26 0 1 1856 models.common.Conv [3, 64, 3, 2]
27 -1 1 73984 models.common.Conv [64, 128, 3, 2]
28 -1 1 212864 models.common.RepNCSPELAN4 [128, 256, 128, 64, 1]
29 -1 1 164352 models.common.ADown [256, 256]
30 [23, 24, 25, -1] 1 0 models.common.CBFuse [[0, 0, 0]]
31 -1 1 847616 models.common.RepNCSPELAN4 [256, 512, 256, 128, 1]
32 -1 1 656384 models.common.ADown [512, 512]
33 [24, 25, -1] 1 0 models.common.CBFuse [[1, 1]]
34 -1 1 2857472 models.common.RepNCSPELAN4 [512, 512, 512, 256, 1]
35 -1 1 656384 models.common.ADown [512, 512]
36 [25, -1] 1 0 models.common.CBFuse [[2]]
37 -1 1 2857472 models.common.RepNCSPELAN4 [512, 512, 512, 256, 1]
38[31, 34, 37, 16, 19, 22] 1 21542822 DualDDetect [1, [512, 512, 512, 256, 512, 512]]
yolov9-c-MCARepNCSPELAN4 summary: 1090 layers, 48268966 parameters, 48268934 gradients, 226.6 GFLOPs