YOLOv9改进策略【损失函数篇】| Shape-IoU:考虑边界框形状和尺度的更精确度量

news2024/11/13 9:08:25

一、本文介绍

本文记录的是改进YOLOv9的损失函数,将其替换成Shape-IoU。现有边界框回归方法通常考虑GT(Ground Truth)框与预测框之间的几何关系,通过边界框的相对位置和形状计算损失,但忽略了边界框本身的形状和尺度等固有属性对边界框回归的影响。为了弥补现有研究的不足,Shape-IoU提出了一种关注边界框本身形状和尺度的边界框回归方法。

文章目录

  • 一、本文介绍
  • 二、Shape-IoU设计原理
    • 2.1 原理
    • 2.2 优势
  • 三、Shape-IoU的实现代码
  • 四、添加步骤
    • 4.1 修改utils/loss_tal_dual.py
    • 3.2 修改utils\loss_tal_dual.py


二、Shape-IoU设计原理

Shape-IoU:考虑边界框形状和尺度的更精确度量

以下是关于Shape-IoU的详细介绍:

2.1 原理

  • 分析边界框回归特性:通过对边界框回归样本的分析,得出以下结论:
    • 当回归样本的偏差和形状偏差相同且不全为0时,假设GT框不是正方形且有长短边,边界框形状和尺度的差异会导致其IoU值的差异。
    • 对于相同尺度的边界框回归样本,当回归样本的偏差和形状偏差相同且不全为0时,边界框的形状会对回归样本的IoU值产生影响。沿着边界框短边方向的偏差和形状偏差对应的IoU值变化更为显著。
    • 对于具有相同形状边界框的回归样本,当回归样本偏差和形状偏差相同且不全为0时,与较大尺度的回归样本相比,较小尺度边界框回归样本的IoU值受GT框形状的影响更为显著。
  • Shape - IoU公式
    • I o U = ∣ B ∩ B g t ∣ ∣ B ∪ B g t ∣ IoU = \frac{|B \cap B^{gt}|}{|B \cup B^{gt}|} IoU=BBgtBBgt
    • w w = 2 × ( w g t ) s c a l e ( w g t ) s c a l e + ( h g t ) s c a l e ww = \frac{2 \times (w^{gt})^{scale}}{(w^{gt})^{scale} + (h^{gt})^{scale}} ww=(wgt)scale+(hgt)scale2×(wgt)scale
    • h h = 2 × ( h g t ) s c a l e ( w g t ) s c a l e + ( h g t ) s c a l e hh = \frac{2 \times (h^{gt})^{scale}}{(w^{gt})^{scale} + (h^{gt})^{scale}} hh=(wgt)scale+(hgt)scale2×(hgt)scale
    • d i s t a n c e s h a p e = h h × ( x c − x c g t c ) 2 + w w × ( y c − y c g t c ) 2 distance^{shape} = hh \times (\frac{x_c - x_c^{gt}}{c})^{2} + ww \times (\frac{y_c - y_c^{gt}}{c})^{2} distanceshape=hh×(cxcxcgt)2+ww×(cycycgt)2
    • Ω s h a p e = ∑ t = w , h ( 1 − e − ω t ) θ , θ = 4 \Omega^{shape} = \sum_{t = w, h}(1 - e^{-\omega_t})^{\theta}, \theta = 4 Ωshape=t=w,h(1eωt)θ,θ=4,其中 { ω w = h h × ∣ w − w g t ∣ m a x ( w , w g t ) ω h = w w × ∣ h − h g t ∣ m a x ( h , h g t ) \left\{\begin{array}{l} \omega_{w} = hh \times \frac{|w - w^{gt}|}{max(w, w^{gt})} \\ \omega_{h} = ww \times \frac{|h - h^{gt}|}{max(h, h^{gt})} \end{array}\right. {ωw=hh×max(w,wgt)wwgtωh=ww×max(h,hgt)hhgt
  • 对应的边界框回归损失 L S h a p e − I o U = 1 − I o U + d i s t a n c e s h a p e + 0.5 × Ω s h a p e L_{Shape - IoU} = 1 - IoU + distance^{shape} + 0.5 \times \Omega^{shape} LShapeIoU=1IoU+distanceshape+0.5×Ωshape

在这里插入图片描述

2.2 优势

  • 提高检测性能:论文中通过一系列对比实验,证明了Shape-IoU方法在不同检测任务中能够有效提高检测性能,优于现有方法,在不同检测任务中达到了最先进的性能。
  • 关注边界框自身属性:考虑了边界框本身的形状和尺度对边界框回归的影响,弥补了现有研究忽略这一因素的不足。
  • 在小目标检测任务中的应用:针对小目标检测任务,提出了Shape-Dot DistanceShape-NWD,将Shape-IoU的思想融入其中,提高了在小目标检测方面的性能。

论文:https://arxiv.org/pdf/2312.17663
源码:https://github.com/malagoutou/Shape-IoU


三、Shape-IoU的实现代码

Shape-IoU的实现代码如下:

def shape_iou(box1, box2, xywh=True, scale=0  eps=1e-7):
    (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
    w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
    b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
    b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
 
    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
 
    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps
 
    # IoU
    iou = inter / union
 
    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance    #Shape-Distance  
    ww = 2 * torch.pow(w2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))
    hh = 2 * torch.pow(h2, scale) / (torch.pow(w2, scale) + torch.pow(h2, scale))
    cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex width
    ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
    c2 = cw ** 2 + ch ** 2 + eps                            # convex diagonal squared
    center_distance_x = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2) / 4
    center_distance_y = ((b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4
    center_distance = hh * center_distance_x + ww * center_distance_y
    distance = center_distance / c2
  
    omiga_w = hh * torch.abs(w1 - w2) / torch.max(w1, w2)
    omiga_h = ww * torch.abs(h1 - h2) / torch.max(h1, h2)
    shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
    
    iou = iou - distance - 0.5 * ( shape_cost)
    return iou  # IoU

四、添加步骤

4.1 修改utils/loss_tal_dual.py

此处需要修改的文件是utils/loss_tal_dual.py

loss_tal_dual.py中定义了模型的损失函数和计算方法,我们想要加入新的损失函数就只需要将代码放到这个文件内即可。

Slide Loss添加后如下:

在这里插入图片描述

3.2 修改utils\loss_tal_dual.py

utils\loss_tal_dual.py是损失函数的辅助分支+主分支损失计算文件。

utils\loss_tal_dual.py在的引用中添加shape_iou,然后在102行处修改成如下代码,使模型调用此Shape-IoU损失函数。

在这里插入图片描述


iou = shape_iou(pred_bboxes_pos, target_bboxes_pos)

在这里插入图片描述

此时再次训练模型便会使用Shape-IoU计算模型的损失函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2143638.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

复习:指针

目录 指针变量 指针变量的内容 引入 指针变量的值 间接访问操作符 概念 运算 基本运算 指针/-整数 指针-指针 引入 算术运算和间接访问操作 自增自减运算符 前置 后置 应用 指针数组 语法 指针数组 数组指针 多级指针 引入 语法 章节问题 指针变量 指针…

Java数据结构(十一)——归并排序、计数排序

文章目录 归并排序算法介绍代码实现非递归实现复杂度和稳定性 计数排序算法介绍代码实现复杂度和稳定性 归并排序 算法介绍 归并排序是一种分而治之的排序算法。基本思想是: 将一个数组分成两半,对每半部分递归地应用归并排序先进行分解,然…

数据权限的设计与实现系列9——前端筛选器组件Everright-filter集成框架开发2

功能实现 ‍ 规则转换为 SQL 片段‍ 规则解析 首先我们来构造一个典型的规则,包括两个条件组,每个组由两个条件组成,由且与或两种逻辑关系,如下图: 然后看看生成的规则,如下: {"filt…

spring中对于servlet API的封装---springWeb

目录 一.springweb概述 二.springweb的特点 三.springweb的运行流程 四.springweb组件 五.springweb的搭建 1.导包 2.配置 DispatcherServlet 3.开启 springweb 注解 4.处理器的搭建 六.springweb注解 七.springweb拦截器 1.拦截器概述 2.拦截器的实现 (1)添加 servelt api 依赖…

开源 AI 智能名片链动 2+1 模式 O2O 商城小程序在社群活动中的应用与时机选择

摘要:本文探讨了开源 AI 智能名片链动 21 模式 O2O 商城小程序在社群经济中的重要性,着重分析了如何借助该小程序适时举办大型活动以维持和引爆社群活跃度。通过对活动时机选择的研究,强调了针对社群用户量身定制活动时机的必要性&#xff0c…

基于python+django+vue的外卖管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于pythondjangovueMySQL的外…

C/C++笔记

C/CPP笔记 杂记 struct msg_train和typedef struct msg_train 大小不一样 cstdio和stdio #include <stdio.h>int main() {printf("Hello, World!\n");return 0; } #include <cstdio>int main() {std::printf("Hello, World!\n");return 0; } 命…

20个Python入门基础语法要点

今天&#xff0c;我们将聚焦于Python的20个基础语法要点&#xff0c;让你的编程之旅更加顺畅。 第一部分&#xff1a;环境搭建与基本概念 1. Hello, World! 你的第一行代码&#xff1a;这是编程旅程的传统起点。 这行代码告诉Python显示文本&#xff0c;print是关键函数&…

常耀斌:AI赋能企业数字化转型(清华社发行)

新书地址&#xff1a; 清华出版社&#xff1a;清华大学出版社-图书详情-《AI赋能企业数字化转型》 京东&#xff1a;《AI赋能企业数字化转型 常耀斌 清华大学出版社 9787302669081》【摘要 书评 试读】- 京东图书 内容简介&#xff1a; 在数字经济时代&#xff0c;企业发…

曲线图如何绘制美观,曲线图10种美化方法

曲线图是比较常用的图形&#xff0c;本文以二维曲线图为例&#xff0c;展示曲线的图的不同美化方法&#xff0c;如图1所示&#xff0c;是一个标准的曲线图&#xff0c;横坐标为x&#xff0c;纵坐标为y, 图1 标准曲线图 调整方法1 首先可以通过改变线的颜色&#xff0c;不同…

从零开始学PostgreSQL (十四):高级功能

目录 1. 简介 2. 视图 3. 外键 4. 事务 5. 窗口函数 6. 继承 7. 结论 简介 PostgreSQL是一个强大且开源的关系型数据库管理系统&#xff0c;以其稳定性、功能丰富性和对SQL标准的广泛支持而闻名。它不仅提供了传统的关系型数据库功能&#xff0c;如事务处理、外键约束和视图&am…

递归基础训练-路径总和

路径总和 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 我们可以把之前的…

【图虫创意-注册安全分析报告-无验证方式导致安全隐患】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 1. 暴力破解密码&#xff0c;造成用户信息泄露 2. 短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉 3. 带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造…

R语言统计分析——散点图2(散点图矩阵、高密度散点图)

参考资料&#xff1a;R语言实战【第2版】 1、散点图矩阵 pairs()函数可以创建基础的散点图矩阵。下面代码用于绘制一个散点图矩阵&#xff0c;包含mtcars数据集中的mpg、disp、drat和wt四个变量&#xff1a; pairs(~mpgdispdratwt,datamtcars,main"Basic Scatter Plot M…

输煤传送带异物识别检测数据集 yolo数据集 2400张

输煤传送带异物识别检测数据集 yolo数据集 2400张 输煤传送带异物识别检测数据集介绍 数据集名称 输煤传送带异物识别检测数据集&#xff08;Conveyor Belt Foreign Object Detection Dataset&#xff09; 数据集概述 该数据集专为输煤传送带上的异物识别检测设计&#xff0…

Unity携程Coroutine用法

一.携程概述 官方的解释是&#xff0c;携程允许你可以在多个帧中执行任务。在Unity中&#xff0c;携程是一个可以暂停并在后续帧中从暂停处继续执行的方法。 二.携程写法 下面示例使用携程和Update打印前5帧的时间间隔&#xff0c;展示了携程的基础写法 using System.Colle…

vmware + ubuntu + 初始配置(超级用户权限、vim安装、ssh登陆、共享文件夹、git)

1 VMware Ubuntu下载与安装 下载与安装 2 使用超级用户权限 &#xff08;1&#xff09;执行命令&#xff1a;sudo passwd root 然后在弹出的密码中输入密码即可&#xff0c;具体如下&#xff1a; 第一个密码是当前用户密码 后面两个是root用户密码 //推荐使用一个密码 3 vi…

SEMIDRIVE X9E Flash 调试要点

一、前言 客户采用芯驰 X9E 平台做的 T-BOX 产品&#xff0c;因为客户选用的 Flash 型号不在 SemiDrive_Memory 支持列表里面&#xff0c;出现机器能烧录不能启动的问题。接下来我们对这个问题进行调试。 二、SEMIDRIVE X9E Flash 调试要点 ① 客户的板子 Flash 型号为 GD25LQ…

43集 ESP32 编译调试出错的解决方法汇总

43集 ESP32 编译调试出错的解决方法汇总 1、提示找不到如下头文件&#xff0c;分别对应adf的component #include “esp_peripherals.h” esp_peripherals #include “audio_element.h” audio_pipeline #include “audio_common.h” audio_pipeline 这几个头文件都是esp-adf里…

【全网首发】2024华为OD机试 E卷D卷抽中题库清单(全真题库,持续更新)含考点说明

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;E卷D卷A卷B卷C卷&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加…