【网络】TCP/IP 五层网络模型:网络层

news2024/11/13 7:53:00

最核心的就是 IP 协议,是一个相当复杂的协议

TCP 详细展开讲解,是因为 TCP 确实在开发中非常关键,经常用到,IP 则不同,和普通程序猿联系比较浅。和专门开发网络的程序猿联系比较紧密(开发路由器,开发交换机,开发防火墙…)

IP 协议总览

网络层的 IP 协议,主要干两个事:

  1. 地址管理:需要指定一套规章制度,能够把互联网上的各种用来上网的设备所在的地址都管理起来==>IP 地址
  2. 路由选择:在进行网络通信的时候,对数据报传输的路径进行的规划

IP 协议报头结构

image.png|387

4位版本

实际上只有两个取值

  • 4 ==> IPv4(主流)
  • 6 ==> IPv6

IPv2IPv5 在实际中是没有的,可能是理论上/实验室中存在

4位首部长度

image.png|376

IP 协议报头也是变长的,因为选项个数不确定,所以报头长度也不确定。因此就需要使用 4 位首部长度进行区分

4 位首部长度范围:0~15,所以报头长度 *4 才是实际的长度

  • 当报头长度为 15,则实际报头长度为 15*4=60

8位服务类型

type of serviceimage.png|176
3位优先权字段(已经弃⽤),4位 TOS 字段,和 1位保留字段(必须置为 0)。4位 TOS 分别表⽰:

  • 最⼩延时:从 A 到 B 的时间消耗更少
  • 最⼤吞吐量:从 A 到 B,单位时间内传输的数量更多
  • 最⾼可靠性:数据丢包概率更小(IP 协议并不想 TCP 那样有严格的可靠性)
  • 最⼩成本:设备上消耗的资源更少
    这四者相互冲突,只能选择⼀个。其中一个为 1,那么其他的都得为 0。IP 协议拥有变身技能!

16位总长度

IP 数据报的长度 image.png|311
UDP 也是 16 位(2 个字节,64KB)。但并非 IP 协议报头最多能携带的数据就是 64KB

IP 协议内置了拆包组包机制,单个 IP 数据报确实没法超过 64KB,但是不代表 IP 协议不能传输超过 64KB 的数据。IP 协议会自动把大的数据包,拆成多个 IP 数据报携带传输,在接收方再进行拼装

装修的时候,装柜子/床,进不了电梯,也进不了房门,怎么办?

  • 厂家发的货就不是拼装好的柜子和床,而是零件
  • 我们就可以先把零件搬进去,然后再组装起来

16位标识、3位标志、13位片偏移

image.png

IP 协议会自动拆包,统一个载荷的数据,会被分成多分,交给多个 IP 数据报来携带。多个 IP 数据包之间:

  • 16位标识 是相同的数值,

  • 13位片偏移 决定组包时候数据报的位置

    • 网络传输数据的时候会存在后发先至的情况,所以不能按照发送顺序就确定接受顺序
  • 3位标志 只有两位有效(有一位是保留位,现在不用,以后可能用,先占个位置)

    • 其中一个标识这个包是否需要组包(是否是拆包的一部分)
    • 另一个表示当前包是否是组包中的最后一个单位

最后组包的时候,根据 16 位标识 确定哪些数据包放在一组,然后根据 13位片偏移 决定顺序,最后根据 3位标志位 决定是不是最后一个

如果就是想使用 UDP 实现传输找过 64KB 的数据,该怎么做呢?

  • 此处参考 IP 协议
  • 在应用层编写代码的时候
    - 引入“标识”,约定标识相同的数据,就应该进行组包
    - 引入“片偏移”,约定组包的时候的先后顺序
    - 引入“标志位”,区分是否需要组包,标识最后一个包

8位生存时间

image.png|137

描述了一个数据包在网络上存活的最长时间

  • 假设构造一个 IP 数据报,目的 IP 写错了(不存在的 IP 地址),结果这个数据包就在网络上传输了很久,也没有达到目的地。
  • 如果让这样的数据包无限传输的话,就会消耗很多网络资源
  • 这样的数据包存在一个两个还好,要是存在很多呢?总不能让这些数据包把路全部堵死了吧

TTL 就是约定了一个传输时间的上限,当达到上限之后,数据包就会被自动丢弃掉

  • 它的单位不是 s 或者 min,而是次数(经过路由器转发的次数)

发送一个 IP 数据报的时候,会有一个初识的 TTL 的值(32,64,128…)。数据包每次经过一个路由器转发,TTL 就会 -1(经过交换机不减)。一旦 TTL 减到 0 了,此时这个数据包就会被当前的路由器直接丢弃掉


image.png|596

  • ping命令:用来检测网络的连通性
  • 输入命令后,我们的电脑就会给百度发送一个数据包,百度收到这个 ping 命令的数据包之后,就会返回一个响应
    • 我们发送了四次 32 字节的数据包
    • 几十毫秒,说明网络比较好;上百,上千毫秒说明网络比较卡
    • 咱们初始 TTL 应该是 64,中间经过了 12 个路由器的转发,最终到达了百度

64 这样的 TTL 够用吗?

  • 正常情况下,64 这样的 TTL非常充裕
    • 六度空间理论(社会科学中的理论)
  • 而且发送数据的时候,还有 128 这样的 TTL

8位协议

image.png|159

IP 数据包中,携带的载荷,是哪种传输层协议的数据包

通过这里的不同数值,感知到接下来要把数据给 TCP 解析,还是 UDP 解析,还是其他协议解析

  • 类似于 TCP/UDP 报头中的“端口号”,决定要将这个数据交个哪个应用程序,也就是要将这个数据交给哪个应用层的具体协议进行处理
    现在 IP 协议要先交给传输层,交给哪个传输层协议进行处理,就通过 8位协议 进行标识

具体的数值这里不谈,这里暂时只聊作用

16位首部校验和

image.png
验证数据在传输中是否出错(只是针对首部,IP 报头)

  • 载荷部分 TCP/UDP 都有自己的校验和,此处就不需要再次进行验证了

32源 IP 地址、32位目的 IP 地址

image.png
IP 数据报中最关键的信息:数据包从哪里来,到哪里去


  • 输入:ipconfig,就可以看到当前机器的 ip 地址 image.png|337
  • IP 地址是 32 位的整数
    • 这是一个很大的数字,不方便人进行阅读和理解
    • 就把 32 位(4 字节)通过 3 个圆点分隔开,每个部分是一个字节,范围 0-255(只要有一个部分不在这个范围,就可以认为是一个非法/错误的 IP)
    • 这就是“点分十进制”写法
    • 但计算机在底层处理这些数据的时候,都是当成 32 位的 IP 地址来处理的

IP 地址,用来标识网络上的一个设备。期望 IP 地址是唯一的

  • 32 位表示的范围:0—42亿9千万
  • 在现在的社会背景下,所存在的需要 IP 地址的设备肯定是超过了这个范围的

地址管理

就是为了解决 IP 不够用的问题


方案一、动态分配 IP 地址

一个设备上网就分配 IP,不上网就先不分配(权宜之计)


方案二、NAT

网络地址转换


以一当千,使用一个 IP,代表一大波设备

NAT 把 IP 地址分为两大类:

  1. 内网 IP / 私网 IP(重要)

    • 10.*
    • 172.16~172.31.*
    • 192.168.*
  2. 外网 IP / 公网 IP:除了私网 IP 就都是公网 IP

要求公网 IP 必须是唯一的,但是私网 IP 在不同的局域网中是允许重复的

  • 一台电脑上,有几个网卡就有几个 IP 地址,虚拟出来的网卡也算(软件模拟的网卡)
  • 一般笔记本都会有:有线网卡和无线网卡,具体哪个生效就看你当前是用网线上网还是 WiFi 上网

NAT 网络地址转换

一个设备在进行上网的时候,IP 数据报中的 IP 地址,就会被 NAT 设备(通常就是路由器)进行自动修改

  1. 同一个局域网内,主机 A 访问主机 B
    不会涉及到 NAT 机制

  2. 公网上的设备 A,访问公网上的设备 B
    不会涉及到 NAT 机制

  3. 不同局域网中的主机 A 访问另一个局域网的主机 B
    NAT 机制中,是不允许的

之前写 UDP 回服务器的时候,我这台电脑上启动 UDP 服务器,你使用 UDP 客户端是不能访问的

  • 因为我处于我这里的局域网,你处于你们那的局域网
  • NAT 机制下,一个局域网中的主机 A 是无法访问领一个主机
  1. 局域网内部的设备 A,访问公网上的设备 B
    NAT 机制主要就是针对这个情况进行生效

但凡是搭建一个服务器给别人使用,都是需要公网 IP 的

  • 单个设备
    image.png|540
  • 此时我的电脑要想访问 CCtalk 这个服务器,就要构造一个 IP 数据报
  • 数据包到达运营商路由器(NAT 设备)之后,就会进行网络地址转换
    • 将源 IP 地址由我的 IP 地址变为运营商公网 IP 地址
    • 所以 CCtalk 看到的数据包,源 IP 不是 192.168.111.222,而是 1.2.3.4

为什么进行这样的 IP 地址的替换就能提高 IP 地址的利用率呢?

  • 其实日常上网的设备:手机、电脑、电视、空调等绝大部分都是在不同的局域网中
  • 此时就相当于一个公网 IP 就可以代表一大批设备

运营商的公网 IP,不是服务一个设备,而是服务一个片区,可能有上万个设备。此时一个 IP 就代表了上万个设备,此时 IP 的利用率就大大提高了

  • 就相当与你在网上买东西,写的收货地址是:北京市海淀区清华园清华大学
  • 这个地址对应着几万个人,而不是你一个人

CCtalk 的响应如何正确地返回到我的电脑上呢?

image.png|473

  • CCtalk 要构造一个响应数据包
  • 达到运营商路由器之后,里面的目的 IP 就会被替换回我的电脑 IP
  • 之后就能顺利达到我的电脑
    运营商路由器这样的 NAT 设备能在发出和收回的时候都进行 IP 替换,就能使内网设备和外网设备进行连接

  • 多个设备(同一个局域网内)

在网络通信中,不仅仅只有 IP 信息,还有一个关键的是端口号

  • 端口号本来是来区分同一个主机上不同的应用程序
  • 在 NAT 中,就可以用于区分不同主机上不同的应用程序

image.png

  • 在我的和你的数据包到达运营商路由器之后,要进行 IP 替换。同时运营商路由器会记录一个映射关系:
旧 IP旧端口新 IP新端口
192.168.111.22212341.2.3.41234
192.168.333.44412351.2.3.41235

返回数据包的时候
image.png

  • 此时,CCtalk 服务器返回的响应数据也是有 IP,也是有端口
  • 端口就决定这个返回值是给我还是给你
    • 运营商路由器收到这个目的端口后,就会看原来记录的映射关系
    • 根据传过来的目的端口,运营商路由器可以知道是哪个 IP 传过来的
    • 之后再将这个目的端口对应的 IP 替换上去就可以传到对应的设备了
  • 目的端口是 1234,就是传给我
  • 目的端口是 1235,就是传给你

此处就是通过端口号,来区分不同主机的不同程序

是否可能出现:你和我的电脑上 CCtalk 源端口恰好是一样的?

  • 这个概率非常小;客户端这里的源端口,是操作系统随机分配的空闲端口
  • 就算你的端口号也是 1234,但是路由器建立映射关系表的时候,可以把端口号也替换成不重复的其他端口
    NAT 既能替换 IP 中的 IP,也能替换 TCP/UDP 中的端口。这个就是 NAPT

我们当前的网络世界,主要就是 NAT 机制的支撑


NAT 机制的缺点
  • 网络环境太复杂了
  • 替换过程中,每一层路由器都需要维护映射关系
  • 每次转发数据,都要查询映射关系
  • 每个步骤都是开销

方案三、IPv6

从根本上解决了 IP 地址不够用的问题

  • IPv4 使用 32 位 4 个字节表示 IP 地址
  • IPv6 使用 128 位 16 个字节表示 IP 地址
    16 个字节表示的 IP 地址数目,比 4 个字节的 IP 地址大: 2 128 − 2 32 2^{128}-2^{32} 2128232。这个地址空间非常大,大到可以给地球上的每一粒沙子都分配一个唯一的 IPv6 地址

IPv6 提出的时间是在上个世纪 90 年代,时间上和 NAT 其实是差不多的。之所以 IPv6 举步维艰,因为 IPv6 和 IPv4 不兼容!

  • 要想使用 IPv6,就要更换新的设备(能支持 IPv6 的设备)
  • IPv6 提出的当年,显然是不具备这样的条件的。换设备就得花钱,但花钱了网速又不会变快(用户感知不到好处)
    NAT 机制,只要给路由器设备更新升级软件即可,硬件不需要改变(成本非常低)
网段划分(组网)

组网的时候,就需要我们针对每个上网设备 IP 地址(包括路由器的 IP)进行设置

我没设置过,好像插上网线就能上网,这是为什么呢?
对于家庭网络这种比较简单的网络结构来说,路由器都有“自动分配 IP”的功能(DHCP)。但在公司、学校、商场、宾馆… 这些更复杂的场景,网络需求更复杂,就需要进行手动设置了。

子网掩码

IP 地址,32 位整数,一分为二

  • 左半部分:网络号
  • 右半部分:主机号
    只看 IP 地址是看不出来的,需要通过“子网掩码”区分出那里是网络号,哪里是主机号

image.png
子网掩码也是 32 位整数。左半部分都是 1,右半部分都是 0(二进制数)

  • 在这里 255.255.0.0 就是 11111111.11111111.00000000.00000000
  • 所以上面 IP 地址中,10.61 就是网络号,15.237 就是主机号

网络中规定:

  • 同一个局域网中的设备,网络号必须相同,主机号必须不同

image.png|418
在这个局域网中,某个设备号不相同的话,就无法上网;某个设备的网络号虽然相同,但主机号和别的设备重复,也无法上网

  • 两个相邻的局域网,网络号必须不同

路由器上有两种网络接口:

  • LAN
  • WAN

image.png|574

此时这个路由器就连接了两个局域网。这两个局域网的 IP 网络号是不能重复的。一旦重复,也上不了网
同一个路由器连接的两个局域网,就叫相邻局域网

LAN 口接设备(你的电脑、电视…),WAN 口接上层路由器
image.png

ABCDE 五类网络
  • AB 类,主机号太多了,实际上一般没有这么大的局域网
  • IP 地址浪费的比较多
    image.png
  • A类:0.0.0.0~127.255.255.255
  • B类:128.0.0.0~191.255.255.255
  • C类:192.0.0.0~223.255.255.255
  • D类:224.0.0.0~239.255.255.255
  • E类:240.0.0.0~247.255.255.255
特殊的 IP 地址
1. 主机号位全 0(二进制)

此时这个 IP 就是表示当前网段(相当于网络号)
因此,给局域网中的某个设备分配 IP 地址的时候,不能把主机号全设为 0


2. 主机号为全 1

比如子网掩码为 255.255.255.0,IP 地址为 192.169.0.255。这里我们可以看到,IP 地址前三个字节为网络号,后一个字节 255 为主机号(11111111

主机号为 11111111 就是广播 IP,往这个 IP 地址上发送数据包,就相当与给整个局域网中所有设备都发了一次数据包(针对一个局域网中的对象)。我们很多看到的“业务上的广播”,都是通过应用层编写代码来实现的,而不是借助广播 IP

以 CCtalk 为例,CCtalk 会维护出很多的“教室信息”,你上课的时候就是在其中一个教室,一个教室会涉及到很多同学(教室数据中就包含所有同学的数据)。此时,老师进行直播的时候,老师那边的画面和声音就会发送给 CCtalk 服务器对应的教室那里,CCtalk 服务器就会根据教室中同学的列表,依次遍历每个列表元素,把数据发送出去
机房上课、地震预警大概率都是这样的实现原理

什么时候是真用到广播 IP?(手机,电视投屏)

  • 手机视频有一个投屏按钮(TV),按下按钮,弹出来一个设备列表,选择投屏到哪个设备上(要求手机和电视得在同一个局域网中)

手机上如何知道局域网中有多少设备允许投屏,这样的功能就可以基于广播 IP 实现

  • 手机触发投屏按钮的时候,往对应的广播 IP 上发送一个数据包(UDP)(TCP 不支持广播,只能一对一)
  • 如果收到这个数据包的设备不具有投屏功能,就不吱声;如果支持,就会返回一个响应,告知我是什么设备,我的 IP 是什么
3. 环回 IP(loopback)

127.*


自发自收,给这个 IP 发送一个数据,设备就会从这个 IP 上再收到同一个数据(自己发给自己)

你踢球的时候,自己射门又自己补射(自射自补)

使用环回 IP 一般进行测试。写的网络程序,大多数情况都是为了跨主机通信。但在此之前,往往需要先自行测试,一台测试客户端和服务器之间能否正常交互

一般使用的环回 IP 是 127.0.0.1,虽然其他的 127 开头的 IP 也是可以的,但是很少见

路由选择

网络是复杂的网状结构,从一个节点到另一个节点之间,可能会存在很多条线路(交通网)

你想从北京去上海,你打开高德地图,会给你提供很多条路线让你选择

  • 高德地图的路由选择和 IP 协议的路由选择是有本质区别的
  • 高德地图知道路线的全貌,给你计算出来的路线就是“最优解”(用时最短/成本最低/最少换乘)
  • IP 协议的路由选择,每个路由器是无法知道网络结构的全貌,只能知道其中的一小部分(每个路由器只知道它附近的设备都是怎样的情况),只能得到“较优解

基本情况

你想从陕科大去邮电大学

  1. 我从陕科大出发,在校门口问 A:邮电大学怎么走?A 表示他也不知道。
    但虽然他不知道,但是他大概清楚邮电在南郊,而我们现在在北郊,得先往南走
    A 就建议我们先去校门口坐 336 公交,往南先走一段再说

  2. 上了 336 之后,我又问 B:邮电怎么走?B 表示他也不知道
    B 也大概清楚,邮电在南郊
    B 建议我继续坐 336 ,到运动公园下车,换乘地铁二号线

  3. 到了运动公园,坐上地铁了,又问 C:邮电怎么走?
    C 表示他也不太清楚,大概知道邮电在很南的地方
    C 就建议我继续坐二号线往南走,坐到小寨(相当于二号线的中点),之后再问问

  4. 到了小寨,又问 D:邮电怎么走?
    D 表示他也不太知道,大概知道,应该继续坐二号线,到航天城,让我到了航天城再说

  5. 到了航天城,又问 E:邮电怎么走?
    E 就告诉我,往西走大概两条街,然后再往北拐半条街就到了

  6. 最终到达邮电


每次在进行问路的时候,每个人都是没法知道西安市的完整地图详细信息的,只能知道其中的一部分信息。但他能给我指出一个方向,我按照这个方向走,就会越来越接近,当足够接近的时候,总是可以遇到一个人能告诉我精确目标地点的。

这就和 IP 协议路由选择非常相似。

  • 上述 ABCDE 这几个问路的人,就相当于路由器。每个路由器都不知道整体网络结构的全貌,但是能够知道其中的一部分。知道的这一部分信息,被称为“路由表”,路由器内部维护的重要的数据结构,类似于 hashkey 就相当于 IP 地址(网络号),value 就是对应的网络接口(往哪个方向走)
  • IP 数据报达到路由器,就要进行路由查表操作:查一查 IP 数据报中的目的 IP 在路由表中是否存在
    • 如果查到了,就是按照路由表指定的方向继续转发即可
    • 如果没有查到,路由表会有一个“默认的表项”(下一跳)
    • 下一跳“指定了一个更高层级的路由器(认识的设备范围更广)
    • 这个路由器要是还找不到,就继续“下一跳”,找到更高层级的路由器(认识的设备范围更广)

真是的转发过程,会更加复杂

  1. 路由表里面的东西是怎么来的?
  • 自动获取的(路由表生成算法)
  • 手工配置(网络管理员,手动设置)
  1. 真实的网络结构(尤其是广域网的网络结构是怎样的)
    感兴趣可以去 B 站搜一下,中国电信/中国移动/中国联通网络架构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2141663.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习自编码器 - 随机编码器和解码器篇

序言 在深度学习领域,自编码器作为一种无监督学习技术,凭借其强大的特征表示能力,在数据压缩、去噪、异常检测及生成模型等多个方面展现出独特魅力。其中,随机编码器和解码器作为自编码器的一种创新形式,进一步拓宽了…

COTERRORSET—— LLM训练新基准让模型从自身错误中学习

概述 论文地址:https://arxiv.org/pdf/2403.20046.pdf 在最近的研究中,大规模语言模型因其推理能力而备受关注。这些模型在各种任务和应用中取得了令人瞩目的成果,尤其是使用思维链(CoT)提示方法的有效性已得到证实。…

智慧宿舍平台|基于Springboot+vue的智慧宿舍系统(源码+数据库+文档)

智慧宿舍系统 目录 基于Springbootvue的智慧宿舍系统 一、前言 二、系统设计 三、系统功能设计 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取 博主介绍:✌️大厂码农|毕设布道师,阿里云开发社区乘风者…

FPGA基本结构和简单原理

前言: FPGA全程为(Field Programmable Gate Array)现场可编程逻辑阵列,以基本的逻辑为主可以实现大多数芯片可以实现的功能,比如说:ASIC芯片等,在半导体领域有着重要的作用。 本文…

3. 轴指令(omron 机器自动化控制器)——>MC_MoveAbsolute

机器自动化控制器——第三章 轴指令 4 MC_MoveAbsolute变量▶输入变量▶输入输出变量▶输入输出变量 功能说明▶指令详情▶时序图▶重启运动指令▶多重启动运动指令▶异常 示例程序1▶参数设定▶动作示例▶梯形图▶结构文本(ST) 示例程序2▶参数设定▶动作示例▶梯形图▶结构文…

【智路】智路OS 应用开发

1 总览 1.1 功能 智路OS的应用基于框架提供的服务数据,实现场景理解、指标计算、V2X核心功能实现,应用包括但不限于: V2X应用场景实现交通事件检测交通流指标计算系统监控路径规划控制 开发者可以基于智路OS框架和数据,实现自…

【CSS in Depth 2 精译_030】5.2 Grid 网格布局中的网格结构剖析(下)

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结) 1.1 层叠1.2 继承1.3 特殊值1.4 简写属性1.5 CSS 渐进式增强技术1.6 本章小结 第二章 相对单位(已完结) 2.1 相对…

Python编程 - 线程

目录 前言 一、线程的使用 (一)基础使用 (二)等待线程完成 (三)多个线程 (四)守护线程 (五)线程同步 (六)总结 二、队列对象 …

编译成功!QT/6.7.2/Creator编译Windows64 MySQL驱动

找了很多编译博文,都错误。最后找到了正确编译办法: https://zhuanlan.zhihu.com/p/567883165 直接下载编译好的源码及dll文件 https://download.csdn.net/download/quantum7/89760587 安装VS Virsual Studio 2022 Community D:\Program Files\Micr…

Double Write

优质博文:IT-BLOG-CN 一、存在的问题 为什么需要Double Write: InnoDB的PageSize是16kb,其数据校验也是针对这16KB来计算的,将数据写入磁盘是以Page为单位的进行操作的。而计算机硬件和操作系统,写文件是以4KB作为基…

Spark Streaming基础概论

1. 简介 1.1 什么是 Spark Streaming? Spark Streaming 是 Apache Spark 的一个扩展模块,专门用于处理实时数据流。它通过将数据流切分为一系列小批次(微批次)进行处理,使得开发者能够使用与批处理相同的 API 来处理…

免费还超快,我用 Cursor 做的“汉语新解”插件开源了

前两天,你是否也被 汉语新解 卡片刷屏,却苦恼于无法快速生成? 记得当时,微信群里、朋友圈里、某书上以及公众号里,到处都在谈论这些生动有趣的“汉语新解”卡片。 这是由提示词大神 @李继刚老师 在 Claude 3.5 上开发的提示词。其辛辣的风格和全新的视角,令人耳目一新。…

SpringBoot+vue集成sm国密加密解密

文章目录 前言认识SM2后端工具类实现引入依赖代码实现工具类:SM2Util 单元测试案例1:生成服务端公钥、私钥,前端js公钥、私钥案例2:客户端加密,服务端完成解密案例3:服务端进行加密(可用于后面前…

Linux下root用户共享conda环境给其他用户

首先可以先用命令查看环境存储位置 conda env list 比如我的root用户的base环境 # conda environments: # base * /usr/local/miniconda3 在root下先给环境添文件夹加普通用户的权限 chmod -R 755 /usr/local/miniconda3 接下来新建一个用户&#xff0…

基于springboot酒店管理系统

酒店管理系统 552酒店管理系统 摘 要 21世纪的今天,随着社会的不断发展与进步,人们对于信息科学化的认识,已由低层次向高层次发展,由原来的感性认识向理性认识提高,管理工作的重要性已逐渐被人们所认识,…

【电脑组装】✈️从配置拼装到安装系统组装自己的台式电脑

目录 🍸前言 🍻一、台式电脑基本组成 🍺二、组装 🍹三、安装系统 👋四、系统设置 👀五、章末 🍸前言 小伙伴们大家好,上篇文章分享了在平时开发的时候遇到的一种项目整合情况&…

记录一题---位示图

注意题目条件:盘块号、字号、位号到底是从0开始还是从1开始 盘块号、字号、位号从0开始,若n表示字长,则: (字号,位号)(i,j)的二进制位对应的盘块号bnij b号盘块对应的字号ib/n,位号jb%n 若字号、位号从1开始,n表示字长…

纯小白安装pytorch(快速上手)

1.首先进入你的虚拟环境(不进入也没关系) 在anaconda prompt中打开,输入activate 虚拟环境2.查看自己的conda源 conda config --show channels3.清空自己的conda源 conda config --remove-key channels4.添加源 conda config --add channels https://mirrors.tu…

Matlab simulink建模与仿真 第十六章(用户定义函数库)

参考视频:simulink1.1simulink简介_哔哩哔哩_bilibili 一、用户定义函数库中的模块概览 注:MATLAB版本不同,可能有些模块也会有差异,但大体上区别是不大的。 二、Fcn/Matlab Fcn模块 1、Fcn模块 双击Fcn模块,在对话…

JavaScript 事件处理

一、简介 ​ 事件:发生在HTML元素上的事情,可以是用户的行为,也可以是浏览器的行为,如 用户点击了某个HTML元素用户将鼠标移动到某个HTML元素上用户输入数据时光标离开页面加载完成 ​ 事件源:事件触发的源头&#xf…