大模型教程:使用 Milvus、vLLM 和 Llama 3.1 搭建 RAG 应用

news2024/9/27 9:23:12

vLLM 是一个简单易用的 LLM 推理服务库。加州大学伯克利分校于 2024 年 7 月将 vLLM 作为孵化项目正式捐赠给 LF AI & Data Foundation 基金会。欢迎 vLLM 加入 LF AI & Data 大家庭!🎉

在主流的 AI 应用架构中,大语言模型(LLM)通常与向量数据库配套使用,用于构建检索增强生成(RAG)应用,从而解决 AI 幻觉问题。本文将介绍如何使用 Milvus、vLLM 和 Llama 3.1 构建并运行RAG 应用。我们将详细展示如何将文本信息转换为 Embedding 向量并存储到 Milvus 向量数据库中、如何将 Milvus 作为知识库有效检索与用户问题相关的文本块。最后,我们将通过 vLLM 使用 Meta的Llama 3.1-8B 模型生成答案。

01

Milvus、vLLM 和 Llama 3.1 简介

Milvus 向量数据库

Milvus 是一款开源的分布式向量数据库,可用于存储、索引和搜索向量数据,适用于生成式 AI(GenAI)应用。Milvus 支持 hybrid search、元数据过滤、重排(Reranking),能够高效处理万亿规模的向量,助力开发者搭建 AI 和 ML 应用。您可以在本地运行 Milvus standalone 或 cluster 版本,或者使用全托管的 Milvus 服务——Zilliz Cloud。

vLLM

vLLM 是加州大学伯克利分校 SkyLab 推出的一个开源项目,专注于优化 LLM 服务性能。通过高效的内存管理技术,如 PagedAttention、持续批处理和优化 CUDA 内核,vLLm 与传统方法相比将服务性能提高了多达 24 倍,同时将 GPU 内存用量减少了一半。

根据论文《Efficient Memory Management for Large Language Model Serving with PagedAttention》,KV 缓存使用约 30% 的 GPU 内存,可能会导致内存问题。KV 缓存存储在连续内存(contiguous memory)中,但内存变化可能导致内存碎片化,不利于计算效率。

d680b206e72f6685b07999eec68eec9b.png

通过使用虚拟内存缓存 KV,vLLM 只需要在必要时分配物理 GPU 内存,有效避免了内存碎片化和内存预分配。在测试中,vLLM 的吞吐量比 HuggingFace Transformers (HF) 高出多达 24 倍,比基于NVIDIA A10G 和 A100 GPU 的 Text Generation Inference (TGI) 高出 3.5 倍。

e8e77e8390e9fbbee05becd0ee9799cf.jpeg

Meta Llama 3.1

Meta 于 2024 年 7 月 23 日宣布推出 Llama 3.1,允许用于多种商业用途。其 405B 模型(4050 亿参数)在多个公开的性能测试中均展示出了最出色的性能,并支持 128,000 个输入 Token 的上下文窗口。除了 405B 模型外,Meta 还发布了 Llama3.1 70B(700 亿参数)和 8B(80 亿参数)模型。您可以通过 Meta 官网下载模型权重(model weight)。

需要注意微调生成的数据可以提高模型性能,但低质量的数据可能会降低模型性能。Llama 团队已不断识别和去除这些低质量的数据,使用模型本身及其他辅助模型和工具,进一步优化模型。

02

使用 Milvus 搭建 RAG-Retrieval部分

准备数据

本教程将使用 Milvus 文档作为数据集。我们需要先下载并本地保存 Milvus 文档。

from langchain.document_loaders import DirectoryLoader
    # Load HTML files already saved in a local directory
    path = "../../RAG/rtdocs_new/"
    global_pattern = '*.html'
    loader = DirectoryLoader(path=path, glob=global_pattern)
    docs = loader.load()




    # Print num documents and a preview.
    print(f"loaded {len(docs)} documents")
    print(docs[0].page_content)
    pprint.pprint(docs[0].metadata)

3545032b6f53a0850df8888c7549ae12.png

下载 Embedding 模型

接着,从 HuggingFace 上下载一个免费的开源 Embedding 模型。

import torch
    from sentence_transformers import SentenceTransformer




    # Initialize torch settings for device-agnostic code.
    N_GPU = torch.cuda.device_count()
    DEVICE = torch.device('cuda:N_GPU' if torch.cuda.is_available() else 'cpu')




    # Download the model from huggingface model hub.
    model_name = "BAAI/bge-large-en-v1.5"
    encoder = SentenceTransformer(model_name, device=DEVICE)




    # Get the model parameters and save for later.
    EMBEDDING_DIM = encoder.get_sentence_embedding_dimension()
    MAX_SEQ_LENGTH_IN_TOKENS = encoder.get_max_seq_length()




    # Inspect model parameters.
    print(f"model_name: {model_name}")
    print(f"EMBEDDING_DIM: {EMBEDDING_DIM}")
    print(f"MAX_SEQ_LENGTH: {MAX_SEQ_LENGTH}")

d0513a10245cb2df47a3a967fcddea62.png

切分数据并编码为向量

将文档数据切分成固定长度(512 个字符)的文本块,并将切分 overlap 设置为 10%。

from langchain.text_splitter import RecursiveCharacterTextSplitter






    CHUNK_SIZE = 512
    chunk_overlap = np.round(CHUNK_SIZE * 0.10, 0)
    print(f"chunk_size: {CHUNK_SIZE}, chunk_overlap: {chunk_overlap}")




    # Define the splitter.
    child_splitter = RecursiveCharacterTextSplitter(
       chunk_size=CHUNK_SIZE,
       chunk_overlap=chunk_overlap)




    # Chunk the docs.
    chunks = child_splitter.split_documents(docs)
    print(f"{len(docs)} docs split into {len(chunks)} child documents.")




    # Encoder input is doc.page_content as strings.
    list_of_strings = [doc.page_content for doc in chunks if hasattr(doc, 'page_content')]




    # Embedding inference using HuggingFace encoder.
    embeddings = torch.tensor(encoder.encode(list_of_strings))




    # Normalize the embeddings.
    embeddings = np.array(embeddings / np.linalg.norm(embeddings))




    # Milvus expects a list of `numpy.ndarray` of `numpy.float32` numbers.
    converted_values = list(map(np.float32, embeddings))




    # Create dict_list for Milvus insertion.
    dict_list = []
    for chunk, vector in zip(chunks, converted_values):
       # Assemble embedding vector, original text chunk, metadata.
       chunk_dict = {
           'chunk': chunk.page_content,
           'source': chunk.metadata.get('source', ""),
           'vector': vector,
       }
       dict_list.append(chunk_dict)

235b31787284e54aac9392de962b3b1e.png

将向量数据存储在 Milvus 中

将向量存储到 Milvus 向量数据库中。

# Connect a client to the Milvus Lite server.
    from pymilvus import MilvusClient
    mc = MilvusClient("milvus_demo.db")






    # Create a collection with flexible schema and AUTOINDEX.
    COLLECTION_NAME = "MilvusDocs"
    mc.create_collection(COLLECTION_NAME,
           EMBEDDING_DIM,
           consistency_level="Eventually",
           auto_id=True, 
           overwrite=True)




    # Insert data into the Milvus collection.
    print("Start inserting entities")
    start_time = time.time()
    mc.insert(
       COLLECTION_NAME,
       data=dict_list,
       progress_bar=True)




    end_time = time.time()
    print(f"Milvus insert time for {len(dict_list)} vectors: ", end="")
    print(f"{round(end_time - start_time, 2)} seconds")

5f42e2174c532e9c36b5f09c9df7946f.png

进行向量搜索

输入问题,并在 Milvus 知识库中搜索与问题最相似的文本块。

SAMPLE_QUESTION = "What do the parameters for HNSW mean?"






    # Embed the question using the same encoder.
    query_embeddings = torch.tensor(encoder.encode(SAMPLE_QUESTION))
    # Normalize embeddings to unit length.
    query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
    # Convert the embeddings to list of list of np.float32.
    query_embeddings = list(map(np.float32, query_embeddings))




    # Define metadata fields you can filter on.
    OUTPUT_FIELDS = list(dict_list[0].keys())
    OUTPUT_FIELDS.remove('vector')




    # Define how many top-k results you want to retrieve.
    TOP_K = 2




    # Run semantic vector search using your query and the vector database.
    results = mc.search(
        COLLECTION_NAME,
        data=query_embeddings,
        output_fields=OUTPUT_FIELDS,
        limit=TOP_K,
        consistency_level="Eventually")

搜索结果如下所示:

b5815f45bcb446e84e704b253b0799be.png

03

使用 vLLM 和 Llama 3.1-8B 搭建 RAG-Generation 部分

安装 vLLM 与 HuggingFace 模型

vLLM 默认从 HuggingFace 下载大语言模型。通常情况下,如果您想使用 HuggingFace 上的新模型,需要执行 pip install --update 或 -U。此外,我们还需要 GPU 通过 vLLM 来运行 Meta 的 Llama 3.1 推理模型。

# (Recommended) Create a new conda environment.
    conda create -n myenv python=3.11 -y
    conda activate myenv




    # Install vLLM with CUDA 12.1.
    pip install -U vllm transformers torch
import vllm, torch
    from vllm import LLM, SamplingParams
    # Clear the GPU memory cache.
    torch.cuda.empty_cache()
    # Check the GPU.
    !nvidia-smi

获取 HuggingFace token

HuggingFace 上的部分模型(如 Meta Llama 3.1)要求用户在下载前接受其许可证。因此,您必须先创建一个 HuggingFace 帐户,接受模型的许可证,并生成一个 Token。

在 HuggingFace 的 Llama3.1 页上,您会收到一条消息要求您同意条款。单击"Accept License"以接受 Meta 条款,然后再下载模型权重。审批流程通常可以在一天内完成。

审批通过后,需要生成一个新的 HuggingFace token。旧 Token 无法使用。

在安装 vLLM 之前,请使用您的新 Token 登录 HuggingFace。以下示例代码中使用 Colab Secrets 来存储 Token。

# Login to HuggingFace using your new token.
    from huggingface_hub import login
    from google.colab import userdata
    hf_token = userdata.get('HF_TOKEN')
    login(token = hf_token, add_to_git_credential=True)

运行 RAG-Generation 部分

我们需要 GPU 和较大的内存来运行 Llama-3.1-8B 模型。以下示例是在 Google Colab Pro上使用 A100 GPU 运行的。

# 1. Choose a model
    MODELTORUN = "meta-llama/Meta-Llama-3.1-8B-Instruct"


    # 2. Clear the GPU memory cache, you're going to need it all!
    torch.cuda.empty_cache()




    # 3. Instantiate a vLLM model instance.
    llm = LLM(model=MODELTORUN,
             enforce_eager=True,
             dtype=torch.bfloat16,
             gpu_memory_utilization=0.5,
             max_model_len=1000,
             seed=415,
             max_num_batched_tokens=3000)

17e4ea8d96a1028f0180c0da3ac65bff.png

# Separate all the context together by space.
    contexts_combined = ' '.join(contexts)
    # Lance Martin, LangChain, says put the best contexts at the end.
    contexts_combined = ' '.join(reversed(contexts))




    # Separate all the unique sources together by comma.
    source_combined = ' '.join(reversed(list(dict.fromkeys(sources))))




    SYSTEM_PROMPT = f"""First, check if the provided Context is relevant to
    the user's question.  Second, only if the provided Context is strongly relevant, answer the question using the Context.  Otherwise, if the Context is not strongly relevant, answer the question without using the Context. 
    Be clear, concise, relevant.  Answer clearly, in fewer than 2 sentences.
    Grounding sources: {source_combined}
    Context: {contexts_combined}
    User's question: {SAMPLE_QUESTION}
    """




    prompts = [SYSTEM_PROMPT]

使用从 Milvus 中检索获得的上下文和原始提问来编写提示,并生成回答。

# Sampling parameters
    sampling_params = SamplingParams(temperature=0.2, top_p=0.95)




    # Invoke the vLLM model.
    outputs = llm.generate(prompts, sampling_params)




    # Print the outputs.
    for output in outputs:
       prompt = output.prompt
       generated_text = output.outputs[0].text
       # !r calls repr(), which prints a string inside quotes.
       print()
       print(f"Question: {SAMPLE_QUESTION!r}")
       pprint.pprint(f"Generated text: {generated_text!r}")

32c91276542560b35797fd5d449a33ee.png

答案十分准确!

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2137754.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据清洗-缺失值处理-缺失值可视化图(竖线)

目录 一、安装所需的python包二、缺失值可视化分析2.1 可直接运行代码2.2 以某个缺失值数据进行可视化实战2.2.1 代码运行过程截屏:2.2.2 缺失图可视化: 感觉大家对原理性的东西不太感兴趣,那我就直接举例提供代码,以及详细的注释…

13、Python如何设置文件缓冲

什么是I/O操作,看一下百度百科的说法:I/O操作是指对设备与cpu连接的接口电路的操作,不是对外围设备直接进行操作。宏观上讲,I/O是信息处理系统(例如计算机)与外部世界(可能是人或其他信息处理系…

Flutter之SystemChrome全局设置

一、简介 SystemChrome作为一个全局属性,很像 Android 的 Application,功能很强大。 二、使用详解 2.1 setPreferredOrientations 设置屏幕方向 在我们日常应用中可能会需要设置横竖屏或锁定单方向屏幕等不同要求,通过 setPreferredOrien…

阿里云镜像报错 [Errno 14] HTTP Error 302 - Found 问题解决记录

1、问题背景和解决思路 在本地安装 CentOS7 后,网络已调通可正常上网,但切换阿里云镜像后,使用 yum 安装软件时出现 “[Errno 14] HTTPS Error 302 - Found Trying other mirror.” 报错,原因是 yum 源配置问题。给出了详细的解决…

分布式可信认证:数据安全与隐私保护新范式

文章目录 前言一、可信数字身份成数据要素流通的关键二、分布式可信认证成数据安全与隐私保护新范式1、分布式可信认证很好地解决传统数字身份认证的痛点问题2、可信数字身份上升为国家战略三、安全是未来数字身份的基础1、有效的威胁建模策略是确保这些系统安全性的基石前言 …

数据清洗-缺失值填充-随机森林搜寻最优参数填充

目录 一、安装所需的python包二、采用随机森林算法进行缺失值填充2.1可直接运行代码2.2以某个缺失值数据进行实战代码运行过程截屏:填充后的数据截屏: 三、随机森林算法 (Random Forest) 介绍3.1随机森林的定义3.2随机森林的基本思想3.3随机森林的工作原…

语言模型中的多模态链式推理(论文复现)

语言模型中的多模态链式推理(论文复现) 本文所涉及所有资源均在传知代码平台可获取 文章目录 语言模型中的多模态链式推理(论文复现)简介摘要引言多模态思维链推理的挑战多模态CoT框架多模态CoT模型架构细节编码模块融合模块解码模…

redis短信登录模型

基于Session实现登录 ,

Unity程序基础框架

概述 单例模式基类 没有继承 MonoBehaviour 继承了 MonoBehaviour 的两种单例模式的写法 缓存池模块 &#xff08;确实挺有用&#xff09; using System.Collections; using System.Collections.Generic; using UnityEngine;/// <summary> /// 缓存池模块 /// 知识点 //…

数据结构基础详解:哈希表【C语言代码实践篇】开放地址法__拉链法_哈希表的创建_增删查操作详解

文章目录 1.哈希表代码实现之开放地址法1.1 开放地址法创建哈希表1.2 开放地址法之查找1.3 开放地址法之插入1.4 开放地址法之删除 2.哈希表代码实现之链地址法(拉链法)2.1 链地址法之创建哈希表2.2 链地址法之查找2.3 链地址法之插入2.4 链地址法之删除 1.哈希表代码实现之开放…

Stable diffusion生图原理

简介 Stable diffusion 是一种基于扩散技术的深度学习模型&#xff0c;于2022年发布&#xff0c;是Stability AI公司推出的首要产品&#xff0c;它主要用于生成以文本描述为条件的详细图像&#xff0c;同时也可以进行补绘、外绘、重绘等任务&#xff0c;但原理都和文生图原理…

C++中矩阵的介绍及相关应用扩展详解

1. 矩阵概念 在数学中&#xff0c;矩阵&#xff08;Matrix&#xff09;是一个按照长方阵列排列的复数或实数集合&#xff0c;最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。 矩阵是高等代数学中的常见工具&#xff0c;也常见于统计分析…

Qt-QPushButton按钮类控件(22)

目录 描述 使用 给按钮添加图片 给按钮添加快捷键 添加槽函数 添加快捷键 添加组合键 开启鼠标的连发功能 描述 经过上面的一些介绍&#xff0c;我们也尝试的使用过了这个控件&#xff0c;接下来我们就要详细介绍这些比较重要的控件了 使用 给按钮添加图片 我们创建…

线性表之单链表

在上一节我们学习了线性表中的顺序表&#xff0c;今天我们来学习一下线性表中的另一种结构——单链表 前言 我们在之前已经初步了解了数据结构中的两种逻辑结构&#xff0c;但线性结构中并非只有顺序表一种&#xff0c;它还有不少兄弟姐妹&#xff0c;今天我们再来学习一下单链…

RealityCapture全面讲解:摄影测量软件的新纪元

随着数字化技术的迅猛发展&#xff0c;摄影测量软件在各行各业中的应用日益广泛。其中&#xff0c;RealityCapture作为一款领先的摄影测量解决方案&#xff0c;以其卓越的速度、精度和易用性&#xff0c;赢得了全球众多专业人士的青睐。本文将全面讲解RealityCapture的功能特点…

演示:基于WPF自绘的中国省份、城市、区县矢量地图

一、目的&#xff1a;演示一个基于WPF自绘的中国省份、城市、区县矢量地图 二、效果 国 省 市 三、功能 支持实际经纬度显示 支持平移&#xff0c;缩放等功能 显示中国地图 显示各个省份地图 显示各个省份地图&#xff08;包含在表格中&#xff0c;包含缩率图&#xff09; 显…

UE4_后期处理五—饱和度调整、隔离、扭曲、重影

一、色彩饱和度调整&#xff1a; 原图 后期处理材质节点&#xff1a; 效果图&#xff1a; 可以根据参数saturation调整饱和还是去饱和。 当saturation为1时&#xff1a;去饱和度&#xff0c;如下图&#xff1a; 当saturation为0时&#xff1a;原始的一个状态&#xff0c;如下…

JS import export export default ES6 modules 玩的明白吗

export (ES6) 导出 一个文件可以有多个&#xff0c;不可重名 命名导出&#xff1a; 使用export关键字导出变量、函数、类或值时&#xff0c;需要为它们指定名称。这些名称将在其他模块中用于导入。 export default 单一导出&#xff1a; export default 只能用于导出一个模块、…

python 读取excel

一、安装依赖&#xff1a; pandas 二、新建excel 示例数据&#xff1a;students.xlsx 三、定义类&#xff1a;student.py Student class Student:def __init__(self, name, sex):self.name nameself.sex sexdef show(self):print(f姓名&#xff1a;{self.name} 性别&#…

全面理解tensor编程中矩阵的行和列

经常会在编程中遇到理解矩阵行和列的事情。 1、要明确无论这个张量有多少维度&#xff0c;它的矩阵乘法都只能作用于最后两个维度。 例如&#xff1a; import torcha torch.rand([64, 32, 3, 4]) b torch.rand([64, 32, 3, 4])c torch.matmul(a, b.transpose(2, 3)) # 交…