基于多种智能优化算法优化BP神经网络的数据回归预测,主要是指通过引入一些优化算法来改进传统的BP(反向传播)神经网络的训练过程,以提高其在回归预测任务中的性能。以下是这个过程的基本原理:
代码原理及流程
1. BP神经网络简介
BP神经网络是一种多层前馈神经网络,主要用于解决非线性映射问题。它通过一个前向传播和一个反向传播的过程进行训练:
(1)前向传播:输入信号经过输入层、隐藏层,直到输出层逐层传递,并得到预测输出。
(2)反向传播:计算预测输出与实际输出的误差,然后将误差反向传播,通过调整网络中的权重和偏置,来最小化误差。
2. BP神经网络的不足
(1)收敛速度慢:BP网络的训练过程容易陷入局部最优解,导致收敛速度慢。
(2)易陷入局部最优:由于随机初始化权重,BP网络可能收敛到局部最优解,而非全局最优。
(3)过拟合问题:在训练数据不足或模型复杂度较高时,BP网络容易产生过拟合。
3.本代码包括的多种智能优化算法
为解决这些问题,研究者常常结合智能优化算法,本代码包括遗传算法(GA)、天鹰优化算法(AO)等十来种智能优化算法优化BP神经网络,这些算法可以通过以下方式提高BP神经网络的性能:
(1)天鹰优化算法(Aquila Optimizer ,AO)https://blog.csdn.net/yuchunyu12/article/details/137409683?ops_request_misc=%257B%2522request%255Fid%2522%253A%252262212C90-B39F-4FC4-BCF0-87874CC93CA6%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=62212C90-B39F-4FC4-BCF0-87874CC93CA6&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-3-137409683-null-null.nonecase&utm_term=AO&spm=1018.2226.3001.4450
(2)遗传算法(Genetic Algorithm,GA)
(3)灰狼优化器(Grey Wolf Optimizer ,GWO)https://blog.csdn.net/yuchunyu12/article/details/137785779?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522A0462028-59F7-4648-B027-EF764058E561%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=A0462028-59F7-4648-B027-EF764058E561&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-8-137785779-null-null.nonecase&utm_term=GWO&spm=1018.2226.3001.4450
(4)蜜獾优化算法(Honey Badger Algorithm,HBA) https://blog.csdn.net/yuchunyu12/article/details/138684549?ops_request_misc=%257B%2522request%255Fid%2522%253A%25229FDA94FF-F0E7-4C4A-BCF5-AC593C2C98A8%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=9FDA94FF-F0E7-4C4A-BCF5-AC593C2C98A8&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-138684549-null-null.nonecase&utm_term=%E8%9C%9C%E7%8D%BE%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&spm=1018.2226.3001.4450
(5)改进的AO算法(IAO) (mbd.pub)https://blog.csdn.net/yuchunyu12/article/details/140035221?ops_request_misc=%257B%2522request%255Fid%2522%253A%25226B93F822-29A1-475B-99E4-A58227EA7477%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=6B93F822-29A1-475B-99E4-A58227EA7477&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-140035221-null-null.nonecase&utm_term=%E6%94%B9%E8%BF%9B%E7%9A%84AO%E7%AE%97%E6%B3%95&spm=1018.2226.3001.4450
(6)基于领导者优化的哈里斯鹰优化算法(LHHO)https://blog.csdn.net/yuchunyu12/article/details/137604907?ops_request_misc=&request_id=&biz_id=102&utm_term=%E5%9F%BA%E4%BA%8E%E9%A2%86%E5%AF%BC%E8%80%85%E4%BC%98%E5%8C%96%E7%9A%84%E5%93%88%E9%87%8C%E6%96%AF%E9%B9%B0%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-137604907.142%5Ev100%5Epc_search_result_base1&spm=1018.2226.3001.4187
(7)飞蛾扑火优化算法(Moth-flame optimization algorithm,MFO)https://blog.csdn.net/yuchunyu12/article/details/138307822?ops_request_misc=%257B%2522request%255Fid%2522%253A%252217973DCE-6B17-4B09-9CAF-4BDC29CDCF24%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=17973DCE-6B17-4B09-9CAF-4BDC29CDCF24&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-138307822-null-null.nonecase&utm_term=%E9%A3%9E%E8%9B%BE%E6%89%91%E7%81%AB%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&spm=1018.2226.3001.4450
(8)海洋掠食者算法(Marine Predators Algorithm,MPA)https://blog.csdn.net/yuchunyu12/article/details/138306724?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522B8637054-2A8C-4C1B-A837-9D41F625B363%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=B8637054-2A8C-4C1B-A837-9D41F625B363&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-1-138306724-null-null.142%5Ev100%5Epc_search_result_base1&utm_term=%E6%B5%B7%E6%B4%8B%E6%8E%A0%E9%A3%9F%E8%80%85%E7%AE%97%E6%B3%95&spm=1018.2226.3001.4187
(9)北苍鹰优化算法(NGO)https://blog.csdn.net/yuchunyu12/article/details/138041068?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522990CBC82-D0E4-4FF7-A489-B24689973D72%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=990CBC82-D0E4-4FF7-A489-B24689973D72&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-138041068-null-null.nonecase&utm_term=%E5%8C%97%E8%8B%8D%E9%B9%B0%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&spm=1018.2226.3001.4450
(10)鱼鹰优化算法(Osprey optimization algorithm,OOA)https://blog.csdn.net/yuchunyu12/article/details/138868941?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522663F47F1-A5A9-4946-9739-FEAE42DEB40E%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=663F47F1-A5A9-4946-9739-FEAE42DEB40E&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-138868941-null-null.nonecase&utm_term=%E9%B1%BC%E9%B9%B0%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&spm=1018.2226.3001.4450
4. 优化BP神经网络的过程
(1)权重初始化:利用智能优化算法来初始化BP网络的权重,可以使得网络从一个更优的初始点开始训练,避免落入局部最优。
(2)训练过程优化:在BP网络的训练过程中,使用优化算法调整学习率、权重更新等参数,以加速收敛并提高预测精度。
(3)全局搜索能力:智能优化算法可以在更大的搜索空间内寻找全局最优解,从而提高模型的泛化能力。
5. 应用效果
通过引入智能优化算法,BP神经网络在回归预测任务中通常能够获得更好的性能表现,包括更快的收敛速度、更高的预测精度以及更强的泛化能力。
总结
综合利用智能优化算法优化BP神经网络,可以有效地改善其训练和预测性能,使其更好地应用于复杂的非线性回归预测任务。
代码效果图
获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复数据回归预测本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。