C++——STL(list类)

news2024/11/25 7:18:04

1.list的介绍

1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好

5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问

2.list的使用

2.1 list的构造

(constructor)

  • list():无参构造,构造空的list
  • list (size_type n, const value_type& val = value_type()):构造的list中包含n个值为val的元素
  • list (const list& x):拷贝构造函数
  • list (InputIterator first, InputIterator last):用[first, last)区间中的元素构造list

list构造函数模拟实现:

//无参构造
List()
{
	CreateHead();
}
//构造
List(int n, const T& val = T())
{
	CreateHead();
	for (int i = 0; i < n; i++)
	{
		push_back(val);
	}
}
//参数为迭代器的构造
template<class iterator>
List(iterator first, iterator last)
{
	CreateHead();
	iterator it = first;
	while (it != last)
	{
		push_back(*it);
		++it;
	}
}
//拷贝构造
List(const List<T>& l)
{
	CreateHead();
	List<T> tmp(l.begin(), l.end());
	this->swap(tmp);
}

//析构
~List()
{
	clear();
	delete _head;
	_head = nullptr;
}

2.2 list iterator的使用

begin  + end :返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器

rbegin +  rend :返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin位置

注意:

1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动 

 list iterator的模拟实现:

template<class T,class Ref,class Ptr>
struct ListIterator
{
	typedef ListNode<T> Node;
	typedef ListIterator<T, Ref, Ptr> Self;
	//构造
	ListIterator(Node* node=nullptr)
		:_node(node)
	{}
	//迭代器的解引用
	Ref operator*()
	{
		return _node->_val;
	}

	Ptr operator->()
	{
		return &(_node->_val);
	}
	//迭代器的移动
	Self operator++()
	{
		_node = _node->_next;
		return *this;
	}

	Self operator++(int)
	{
		Self tmp(*this);
		_node = _node->_next;
		return tmp;
	}

	Self operator--()
	{
		_node = _node->_prev;
		return *this;
	}
	
	Self operator--(int)
	{
		Self tmp(*this);
		_node = _node->_prev;
		return tmp;
	}
	//迭代器的比较
	bool operator!=(const Self& it) const
	{
		return _node != it._node;
	}

	bool operator==(const Self& it) const
	{
		return _node == it._node;
	}
	Node* _node; //迭代器本质是节点指针
};

2.3 list capacity

  • empty :检测list是否为空,是返回true,否则返回false
  • size :返回list中有效节点的个数

模拟实现:

// 容量相关
//size
size_t size() const
{
	Node* cur = _head->_next;
	size_t count = 0;
	while (cur != _head)
	{
		++count;
		cur = cur->_next;
	}
	return count;
}

bool empty() const
{
	return _head->_next == _head;
}

 2.4 list element access

  • front :返回list的第一个节点中值的引用
  • back :返回list的最后一个节点中值的引用

模拟实现:

//元素访问
T& front()
{
	return _head->_next->_val;
}

const T& front()const
{
	return _head->_next->_val;
}

T& back()
{
	return _head->_prev->_val;
}

const T& back()const
{
	return _head->_prev->_val;
}

 2.5 list Modifiers

  • push_front  :在list首元素前插入值为val的元素
  • pop_front :删除list中第一个元素
  • push_back :在list尾部插入值为val的元素
  • pop_back :删除list中最后一个元素
  • insert :在list position 位置中插入值为val的元素
  • erase :删除list position位置的元素
  • swap :交换两个list中的元素
  • clear :清空list中的有效元素
  • resize :改变list的size

 模拟实现:

//插入删除
void push_back(const T& data)
{
	insert(end(), data);
}

void pop_back()
{
	erase(--end());
}

void push_front(const T& data)
{
	insert(begin(), data);
}

void pop_front()
{
	erase(begin());
}

//insert
iterator insert(iterator pos, const T& val)
{
	Node* newnode = new Node(val);
	Node* cur = pos._node;
	newnode->_prev = cur->_prev;
	newnode->_next = cur;
	newnode->_prev->_next = newnode;
	cur->_prev = newnode;
	return iterator(newnode);
}

//erase
iterator erase(iterator pos)
{
	Node* cur = pos._node;
	Node* Ret = cur->_next;
	cur->_prev->_next = cur->_next;
	cur->_next->_prev = cur->_prev;
	delete cur;
	return iterator(Ret);
}

//swap
void swap(bit::List<T>& l)
{
	std::swap(_head, l._head);
}

//clear
void clear()
{
	Node* cur = _head->_next;

	while (cur != _head)
	{
		Node* next = cur->_next;
		delete cur;
		cur = next;
	}
	_head->_prev = _head->_next = _head;
}

//resize
void resize(size_t newsize, const T& data = T())
{
	int oldsize = size();
	if (newsize > oldsize)
	{
		while (oldsize < newsize)
		{
			push_back(data);
			++oldsize;
		}
	}
	else
	{
		while (oldsize > newsize)
		{
			pop_back();
			--oldsize;
		}
	}
}

2.6 list迭代器失效问题

大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节
点被删除了
。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

 3.list与vector的对比

vector链接

vector

list

动态顺序表,一段连续空间

带头结点的双向循环链表

访

支持随机访问,访问某个元素效O(1)

不支持随机访问,访问某个元素效率O(N)

任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低

任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1)

底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高

底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低

原生态指针

对原生态指针(节点指针)进行封装

在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删

除时,当前迭代器需要重新赋值否则会失效

插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响

使

需要高效存储,支持随机访问,不关心插入删除效率

大量插入和删除操作,不关心随机访问

4.模拟实现源码 

list.h

#pragma once

#include<iostream>

using namespace std;

namespace bit
{
	template<class T>
	struct ListNode
	{
		ListNode(const T& val=T())
			:_prev(nullptr)
			,_next(nullptr)
			,_val(val)
		{}

		ListNode* _prev;
		ListNode* _next;
		T _val;
	};

	template<class T,class Ref,class Ptr>
	struct ListIterator
	{
		typedef ListNode<T> Node;
		typedef ListIterator<T, Ref, Ptr> Self;
		//构造
		ListIterator(Node* node=nullptr)
			:_node(node)
		{}
		//迭代器的解引用
		Ref operator*()
		{
			return _node->_val;
		}

		Ptr operator->()
		{
			return &(_node->_val);
		}
		//迭代器的移动
		Self operator++()
		{
			_node = _node->_next;
			return *this;
		}

		Self operator++(int)
		{
			Self tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		Self operator--()
		{
			_node = _node->_prev;
			return *this;
		}
		
		Self operator--(int)
		{
			Self tmp(*this);
			_node = _node->_prev;
			return tmp;
		}
		//迭代器的比较
		bool operator!=(const Self& it) const
		{
			return _node != it._node;
		}

		bool operator==(const Self& it) const
		{
			return _node == it._node;
		}
		Node* _node; //迭代器本质是节点指针
	};

	template<class Iterator>
	struct ReverseListIterator
	{
		typedef typename Iterator::Ref Ref;
		typedef typename Iterator::Ptr Ptr;
		typedef ReverseListIterator<Iterator> Self;
		//构造
		ReverseListIterator(Iterator it)
			:_it(it)
		{}

		//迭代器的解引用
		Ref operator*()
		{
			Self tmp(_it);
			--tmp;
			return *tmp;
		}

		Ptr operator->()
		{
			Self tmp(_it);
			--tmp;
			return &(operator*());
		}

		//迭代器的移动
		Self operator++()
		{
			--_it;
			return *this;
		}

		Self operator++(int)
		{
			Self tmp(_it);
			--_it;
			return tmp;
		}

		Self operator--()
		{
			++_it;
			return *this;
		}

		Self operator--(int)
		{
			Self tmp(_it);
			++_it;
			return tmp;
		}

		//反向迭代器的比较
		bool operator!=(const Self& rit) const
		{
			return _it != rit._it;
		}

		bool operator==(const Self& rit) const
		{
			return _it == rit._it;
		}

		Iterator _it;
	};

	template<class T>
	class List
	{
		typedef ListNode<T> Node;
	public:
		//迭代器
		typedef ListIterator<T, T&, T*> iterator;
		typedef ListIterator<T, const T&, const T*> const_iterator;
		//反向迭代器
		typedef ReverseListIterator<iterator> reverse_iterator;
		typedef ReverseListIterator<const_iterator> const_reverse_iterator;

		//无参构造
		List()
		{
			CreateHead();
		}
		//构造
		List(int n, const T& val = T())
		{
			CreateHead();
			for (int i = 0; i < n; i++)
			{
				push_back(val);
			}
		}
		//参数为迭代器的构造
		template<class iterator>
		List(iterator first, iterator last)
		{
			CreateHead();
			iterator it = first;
			while (it != last)
			{
				push_back(*it);
				++it;
			}
		}
		//拷贝构造
		List(const List<T>& l)
		{
			CreateHead();
			List<T> tmp(l.begin(), l.end());
			this->swap(tmp);
		}

		//析构
		~List()
		{
			clear();
			delete _head;
			_head = nullptr;
		}
		/
		// 迭代器
		iterator begin()
		{
			return iterator(_head->_next);
		}
		const_iterator begin()const
		{
			return const_iterator(_head->_next);
		}
		iterator end()
		{
			return iterator(_head);
		}
		const_iterator end()const
		{
			return const_iterator(_head);
		}
		
		//反向迭代器
		reverse_iterator rbegin()
		{
			return reverse_iterator(end());
		}
		reverse_iterator rend()
		{
			return reverse_iterator(begin());
		}

		const_reverse_iterator rbegin()const
		{
			return const_reverse_iterator(end());
		}

		const_reverse_iterator rend()const
		{
			return const_reverse_iterator(begin());
		}
		//
		// 容量相关
		//size
		size_t size() const
		{
			Node* cur = _head->_next;
			size_t count = 0;
			while (cur != _head)
			{
				++count;
				cur = cur->_next;
			}
			return count;
		}
		bool empty() const
		{
			return _head->_next == _head;
		}
		void resize(size_t newsize, const T& data = T())
		{
			int oldsize = size();
			if (newsize > oldsize)
			{
				while (oldsize < newsize)
				{
					push_back(data);
					++oldsize;
				}
			}
			else
			{
				while (oldsize > newsize)
				{
					pop_back();
					--oldsize;
				}
			}
		}
		/
		//元素访问
		T& front()
		{
			return _head->_next->_val;
		}
		
		const T& front()const
		{
			return _head->_next->_val;
		}

		T& back()
		{
			return _head->_prev->_val;
		}

		const T& back()const
		{
			return _head->_prev->_val;
		}
		//
		//插入删除
		void push_back(const T& data)
		{
			insert(end(), data);
		}

		void pop_back()
		{
			erase(--end());
		}

		void push_front(const T& data)
		{
			insert(begin(), data);
		}

		void pop_front()
		{
			erase(begin());
		}
		
		//insert
		iterator insert(iterator pos, const T& val)
		{
			Node* newnode = new Node(val);
			Node* cur = pos._node;
			newnode->_prev = cur->_prev;
			newnode->_next = cur;
			newnode->_prev->_next = newnode;
			cur->_prev = newnode;
			return iterator(newnode);
		}
		
		//erase
		iterator erase(iterator pos)
		{
			Node* cur = pos._node;
			Node* Ret = cur->_next;
			cur->_prev->_next = cur->_next;
			cur->_next->_prev = cur->_prev;
			delete cur;
			return iterator(Ret);
		}

		void clear()
		{
			Node* cur = _head->_next;

			while (cur != _head)
			{
				Node* next = cur->_next;
				delete cur;
				cur = next;
			}
			_head->_prev = _head->_next = _head;
		}

		void swap(bit::List<T>& l)
		{
			std::swap(_head, l._head);
		}
	private:
		void CreateHead()
		{
			_head = new Node;
			_head->_next = _head;
			_head->_prev = _head;
		}


		Node* _head;
	};
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2129164.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一文400字看懂,如何评估系统负载指标load average

在linux系统输入指令top后可以看到系统近1分钟、近5分钟、近15分钟的平均负载。 但是很多人工作10年也未必知道这个指标的含义&#xff0c;到底多少表示系统已经忙不过来&#xff1f; 如图&#xff0c;最近1分钟、5分钟&#xff0c;15分钟系统平均负载分别是0.10&#xff0c;0…

什么是充放电测试?怎么测试电源的充放电性能?

对于需要不间断电源供应的电子系统而言&#xff0c;某些电源模块通过搭载电池来应对突发停电或其他系统故障。针对这些模块的电池性能保障&#xff0c;充放电测试显得尤为重要&#xff0c;它是确保电源稳定性的关键测试方法。 充放电测试原理 充放电测试是指通过模拟电池在实际…

还不知道ACP认证?那你真落后了

随着云计算技术的蓬勃发展&#xff0c;已经成为推动企业数字化转型的关键力量。 在众多云服务提供商中&#xff0c;阿里云以其强大的技术实力和广泛的服务范围&#xff0c;在全球市场上占据了重要地位。对于IT专业人士而言&#xff0c;掌握云计算技能不仅是顺应技术潮流的需要&…

【笔记】1.4 特殊二极管

文章目录 一、稳压二极管1、稳压管的伏安特性和符号2、稳压管的主要参数&#xff08;1&#xff09;稳定电压 U Z U_Z UZ​&#xff08;2&#xff09;稳定电流 I Z I_Z IZ​&#xff08;3&#xff09;耗散功率 P M P_M PM​ 3、应用稳压管应注意的问题例&#xff1a;稳压二极管的…

一文读懂多组学联合分析产品在医学领域的应用

疾病的发生和发展通常涉及多个层面的生物学过程&#xff0c;包括基因表达、蛋白质功能、代谢物变化等。传统的单一组学研究只能提供某一层面的信息&#xff0c;而多组学关联分析能够综合多个层面的数据&#xff0c;提供更全面、更深入的疾病理解。例如&#xff0c;通过分析患者…

828华为云征文|华为云Flexus云服务器X实例之openEuler系统下搭建k3s轻量级kubernetes环境

828华为云征文&#xff5c;华为云Flexus云服务器X实例之openEuler系统下搭建k3s轻量级kubernetes环境 前言一、Flexus云服务器X实例介绍1.1 Flexus云服务器X实例简介1.2 Flexus云服务器X实例特点1.3 Flexus云服务器X实例使用场景 二、K3s介绍2.1 K3s简介2.2 K3s主要特点2.3 k3s…

Bonree ONE 3.0 助力企业加速驶入“全域可观测”新时代

发展新质生产力是我国目前推动高质量发展的内在要求和重要着力点。在这一背景下&#xff0c;基于信息技术及关键生产要素数据&#xff0c;推进企业数智化转型&#xff0c;成为形成新质生产力的关键路径。当前&#xff0c;随着企业业务的不断扩展和复杂化&#xff0c;企业对数据…

Linux本地部署DbGate结合内网穿透工具实现无公网IP远程管理数据库

文章目录 前言1. 安装Docker2. 使用Docker拉取DbGate镜像3. 创建并启动DbGate容器4. 本地连接测试5. 公网远程访问本地DbGate容器5.1 内网穿透工具安装5.2 创建远程连接公网地址5.3 使用固定公网地址远程访问 前言 本文主要介绍如何在Linux Ubuntu系统中使用Docker部署DbGate数…

笔记整理—内核!启动!—kernel部分(2)从汇编阶段到start_kernel与内核进程

kernel起始与ENTRY(stext)&#xff0c;和uboot一样&#xff0c;都是从汇编阶段开始的&#xff0c;因为对于kernel而言&#xff0c;还没进行栈的维护&#xff0c;所以无法使用c语言。_HEAD定义了后面代码属于段名为.head .text的段。 内核起始部分代码被解压代码调用&#xff0c…

labview串口大数据量报错的一种解决思路(通过tcp进行写入和读取串口数据)

因为项目要求&#xff0c;用labview给客户开发了一个上位机&#xff0c;在现场给客户调试上位机时&#xff0c;发现了几种奇怪的现象 1&#xff1a;客户样件有两路串口&#xff0c;一路串口可以多字节进行发送数据&#xff0c;一路只能单字节发送数据&#xff0c;每次单字节数据…

k8s--pod控制器--1

Pod控制器介绍 Pod是kubernetes的最小管理单元&#xff0c;在kubernetes中&#xff0c;按照pod的创建方式可以将其分为两类&#xff1a; 自主式pod&#xff1a;kubernetes直接创建出来的Pod&#xff0c;这种pod删除后就没有了&#xff0c;也不会重建 控制器创建的pod&#xf…

Vue: 创建vue项目

目录 一.创建项目 二.项目添加 三.添加成功 一.创建项目 打开本机终端输入npm create vuelatest 二.项目添加 1. 项目名称&#xff1a; Project name: one_vue 2.是否添加TypeScript支持&#xff1a;Add TypeScript? Yes 3.是否添加JSX支持&#xff1a;Add JSX Suppor…

基于SpringBoot的点餐平台网站

你好呀&#xff0c;我是计算机学姐码农小野&#xff01;如果有相关需求&#xff0c;可以私信联系我。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot框架&#xff0c;Java技术 工具&#xff1a;IDEA/Eclipse、Navicat、Maven、Tomcat 系统…

【JAVA入门】Day41 - 字节缓冲流和字符缓冲流

【JAVA入门】Day41 - 字节缓冲流和字符缓冲流 文章目录 【JAVA入门】Day41 - 字节缓冲流和字符缓冲流一、缓冲流的体系结构二、字节缓冲流2.1 字节缓冲流提高效率的底层原理 三、字符缓冲流 在IO流体系中&#xff0c;FileInputStream&#xff0c;FileOutputStream&#xff0c;F…

Java企业面试题2

1.语言的分代&#xff1a; 第1代&#xff1a;机器语言 机器语言是最底层的计算机编程语言&#xff0c;它是由二进制数构成的一系列指令&#xff0c;直接与计算机硬件交互。每个二进制位模式代表一条特定的指令或数据地址。因为它是直接在硬件上执行的&#xff0c;所以运行效率…

如何增加Google收录量?

想增加Google收录量&#xff0c;首先自然是你的页面数量就要多&#xff0c;但这些页面的内容也绝对不能敷衍&#xff0c;你的网站都没多少页面&#xff0c;谷歌哪怕想收录都没办法&#xff0c;当然&#xff0c;这是一个过程&#xff0c;持续缓慢的增加页面&#xff0c;增加网站…

如何使用ArcGIS Pro绘制三维地图

如何使用ArcGIS Pro将栅格数据用三维的形式进行表达&#xff1f;在ArcGIS里可以使用ArcScene来实现&#xff0c;ArcGIS Pro实现原理跟ArcScene一致。由于Esri未来将不再对ArcGIS更新&#xff0c;所以可以尽快把ArcGIS Pro熟悉起来了~ 下面介绍一下如何将栅格数据以三维形式展示…

《澳门新攻略》诚意收官 澳门文旅综艺缔造新高度

日前刚刚收官的芒果TV综艺《澳门新攻略》&#xff0c;开辟新的视角将节目重点聚焦在了澳门北区的社区美食上。把应接不暇的美食美景和最本土的人文融合在一起&#xff0c;带火了澳门当地旅游业又一黑马行程——澳门深度社区游。随着线上综艺有趣、保姆级打卡攻略的呈现&#xf…

【C++】——vector

文章目录 vector介绍vector的使用vector的构造vector迭代器vector空间增减vector增删查改 vector介绍 vector是一个动态数组&#xff0c;可以根据需求变大变小vector支持随机访问vector会自动管理内存分配和释放vector在尾部添加和删除的效率非常高&#xff0c;中间和头部插入较…

reader-lm:小模型 html转markdown

参考&#xff1a; https://huggingface.co/jinaai/reader-lm-0.5b 在线demo&#xff1a; https://colab.research.google.com/drive/1wXWyj5hOxEHY6WeHbOwEzYAC0WB1I5uA#scrollTo0mG9ISzHOuKK 输入网址&#xff1a;https://www.galaxy-geely.com/E5 结果&#xff1a; 代码…