【腾讯云】AI驱动的数据库TDSQL-C如何是从0到1体验电商可视化分析小助手得统计功能,一句话就能输出目标统计图

news2024/12/30 1:37:18

欢迎来到《小5讲堂》
这是《腾讯云》系列文章,每篇文章将以博主理解的角度展开讲解。
温馨提示:博主能力有限,理解水平有限,若有不对之处望指正!

在这里插入图片描述

目录

  • 背景
  • 效果图
  • 流程图
  • 创建数据库
    • 基本信息
    • 数据库配置
    • 设置密码
    • 控制台
    • 开启公网访问
    • 登录管理工具
    • 新建数据库
    • 新建表
    • 表和数据SQL
  • 部署算力服务器
    • 基本信息
    • 选择应用
    • 应用详情
    • 查看HAI
  • 本地python环境搭建
    • 下载地址
    • 安装依赖
  • 构建应用
    • 搭建项目框架
    • 配置文件代码
    • 详细说明
    • 应用开发代码
    • 运行和效果
  • 踩坑经验
    • 未找到模块
    • 未找到表
  • 输出效果

背景

AI 技术的应用极大地提升了运营效率,并为电商行业带来了个性化推荐、用户行为分析、库存管理和市场趋势预测等关键领域的数据分析能力,在这种背景下,构建一个高效、可靠的AI电商数据分析系统显得尤为关键。
基于这个背景下,如何利用腾讯云的高性能应用服务 HAITDSQL-C MySQL Serverless 版构建 AI电商数据分析系统。HAI作为一个面向AI和科学计算的GPU应用服务产品,提供了强大的计算能力,使得复杂AI模型如LLM的快速部署和运行成为可能,进而支持自然语言处理和图像生成等高级任务。与此同时,TDSQL-C MySQL版作为一款云原生关系型数据库,其100%的MySQL兼容性,以及极致的弹性、高性能和高可用性,使其成为电商业务中处理海量数据存储和查询的理想选择。
让我们一起探索下,TDSQL数据库是如何与HAI结合通过一句话就能输出统计目标图?
下面将通过 Python 编程语言和基于 Langchain 的框架,逐步完成系统的构建和部署。

效果图

下面展示的就是本次完成部署后网页端输出的统计数据效果图。
在这里插入图片描述

流程图

在这里插入图片描述

创建数据库

基本信息

云原生数据库 TDSQL-C(Cloud Native Database TDSQL-C)简称 TDSQL-C。
TDSQL-C 是腾讯云自研的新一代高性能高可用的企业级分布式云数据库。
融合了传统数据库、云计算与新硬件技术的优势,100%兼容 MySQL 和 PostgreSQL,实现超百万级 QPS 的高吞吐,海量分布式智能存储,保障数据安全可靠。

数据库配置

访问腾讯云官网申请 TDSQL-C Mysql 服务器
地址:https://cloud.tencent.com/product/tdsqlc
在这里插入图片描述
实例形态选择Serverless,数据库引擎选择MySql。
其他按默认,也可以根据自己情况选择,私有网络第一次使用可以留空,创建完成后会自动生成。
在这里插入图片描述
数据库版本博主这里选择MySQL8.0,其他都是默认选项。
在这里插入图片描述

设置密码

管理员账号名默认就是root,密码这个需要自己设置和记住,后续就是要使用。
在这里插入图片描述
高级配置这里的表名大小写选择不敏感,其他都是默认选择。在这里插入图片描述

控制台

完成上面操作后,可以在数据库控制台查看相关信息。
控制台地址:https://console.cloud.tencent.com/cynosdb/mysql/ap-shanghai/cluster/cynosdbmysql-58ufm8lc/detail
在这里插入图片描述

开启公网访问

鼠标移动到红色框区域就会有一个开启的按钮,点击就会生成主机和端口信息。
在这里插入图片描述

登录管理工具

点击右上角的登录
在这里插入图片描述
账号就是前面默认的root,密码就是刚刚自己设置的值。在这里插入图片描述

新建数据库

这里博主命名新建的数据库名称为shop,当然自己实际业务进行命名。
熟悉mysql的朋友,估计看到这些操作都很熟悉了。在这里插入图片描述
在这里插入图片描述

新建表

选择刚刚创建好的shop数据库,然后点击SQL窗口,在窗口输入执行的SQL,最后点击【执行】按钮。
在这里插入图片描述

表和数据SQL

这里提供一份示例SQL表和数据。
下面语句会执行创建三张表,ecommerce_sales_stats、users、orders

CREATE TABLE `ecommerce_sales_stats` (
  `category_id` int NOT NULL COMMENT '分类ID(主键)',
  `category_name` varchar(100) NOT NULL COMMENT '分类名称',
  `total_sales` decimal(15,2) NOT NULL COMMENT '总销售额',
  `steam_sales` decimal(15,2) NOT NULL COMMENT 'Steam平台销售额',
  `offline_sales` decimal(15,2) NOT NULL COMMENT '线下实体销售额',
  `official_online_sales` decimal(15,2) NOT NULL COMMENT '官方在线销售额',
  PRIMARY KEY (`category_id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8mb4 AUTO_INCREMENT=1 COMMENT='电商分类销售统计表';
INSERT INTO `ecommerce_sales_stats` VALUES (1,'电子产品',150000.00,80000.00,30000.00,40000.00),(2,'服装',120000.00,20000.00,60000.00,40000.00),(3,'家居用品',90000.00,10000.00,50000.00,30000.00),(4,'玩具',60000.00,5000.00,30000.00,25000.00),(5,'书籍',45000.00,2000.00,20000.00,23000.00),(6,'运动器材',70000.00,15000.00,25000.00,30000.00),(7,'美容护肤',80000.00,10000.00,30000.00,40000.00),(8,'食品',50000.00,5000.00,25000.00,20000.00),(9,'珠宝首饰',30000.00,2000.00,10000.00,18000.00),(10,'汽车配件',40000.00,10000.00,15000.00,25000.00),(11,'手机配件',75000.00,30000.00,20000.00,25000.00),(12,'电脑配件',85000.00,50000.00,15000.00,20000.00),(13,'摄影器材',50000.00,20000.00,15000.00,15000.00),(14,'家电',120000.00,60000.00,30000.00,30000.00),(15,'宠物用品',30000.00,3000.00,12000.00,16800.00),(16,'母婴用品',70000.00,10000.00,30000.00,30000.00),(17,'旅行用品',40000.00,5000.00,15000.00,20000.00),(18,'艺术品',25000.00,1000.00,10000.00,14000.00),(19,'健康产品',60000.00,8000.00,25000.00,27000.00),(20,'办公用品',55000.00,2000.00,20000.00,33000.00);
CREATE TABLE `users` (
  `user_id` int NOT NULL AUTO_INCREMENT COMMENT '用户ID(主键,自增)',
  `full_name` varchar(100) NOT NULL COMMENT '用户全名',
  `username` varchar(50) NOT NULL COMMENT '用户名',
  `email` varchar(100) NOT NULL COMMENT '用户邮箱',
  `password_hash` varchar(255) NOT NULL COMMENT '用户密码的哈希值',
  `created_at` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `updated_at` datetime DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  `is_active` tinyint(1) DEFAULT '1' COMMENT '是否激活',
  PRIMARY KEY (`user_id`),
  UNIQUE KEY `email` (`email`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4  COMMENT='用户表';
INSERT INTO `users` VALUES (1,'张伟','zhangwei','zhangwei@example.com','hashed_password_1','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(2,'李娜','lina','lina@example.com','hashed_password_2','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(3,'王芳','wangfang','wangfang@example.com','hashed_password_3','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(4,'刘洋','liuyang','liuyang@example.com','hashed_password_4','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(5,'陈杰','chenjie','chenjie@example.com','hashed_password_5','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(6,'杨静','yangjing','yangjing@example.com','hashed_password_6','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(7,'赵强','zhaoqiang','zhaoqiang@example.com','hashed_password_7','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(8,'黄丽','huangli','huangli@example.com','hashed_password_8','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(9,'周杰','zhoujie','zhoujie@example.com','hashed_password_9','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(10,'吴敏','wumin','wumin@example.com','hashed_password_10','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(11,'郑伟','zhengwei','zhengwei@example.com','hashed_password_11','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(12,'冯婷','fengting','fengting@example.com','hashed_password_12','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(13,'蔡明','caiming','caiming@example.com','hashed_password_13','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(14,'潘雪','panxue','panxue@example.com','hashed_password_14','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(15,'蒋磊','jianglei','jianglei@example.com','hashed_password_15','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(16,'陆佳','lujia','lujia@example.com','hashed_password_16','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(17,'邓超','dengchao','dengchao@example.com','hashed_password_17','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(18,'任丽','renli','renli@example.com','hashed_password_18','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(19,'彭涛','pengtao','pengtao@example.com','hashed_password_19','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(20,'方圆','fangyuan','fangyuan@example.com','hashed_password_20','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(21,'段飞','duanfei','duanfei@example.com','hashed_password_21','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(22,'雷鸣','leiming','leiming@example.com','hashed_password_22','2024-08-18 04:07:18','2024-08-18 04:07:18',1),(23,'贾玲','jialing','jialing@example.com','hashed_password_23','2024-08-18 04:07:18','2024-08-18 04:07:18',1);
CREATE TABLE `orders` (
  `order_id` int NOT NULL AUTO_INCREMENT,
  `user_id` int DEFAULT NULL,
  `order_amount` decimal(10,2) DEFAULT NULL,
  `order_status` varchar(20) DEFAULT NULL,
  `order_time` datetime DEFAULT NULL,
  PRIMARY KEY (`order_id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 ;
INSERT INTO `orders` VALUES (1,3,150.50,'已支付','2024-08-23 10:01:00'),(2,7,89.20,'待支付','2024-08-23 10:03:15'),(3,12,230.00,'已支付','2024-08-23 10:05:30'),(4,2,99.90,'已发货','2024-08-23 10:07:45'),(5,15,120.00,'待发货','2024-08-23 10:10:00'),(6,21,180.50,'已支付','2024-08-23 10:12:15'),(7,4,105.80,'待支付','2024-08-23 10:14:30'),(8,18,210.00,'已支付','2024-08-23 10:16:45'),(9,6,135.20,'已发货','2024-08-23 10:19:00'),(10,10,160.00,'待发货','2024-08-23 10:21:15'),(11,1,110.50,'已支付','2024-08-23 10:23:30'),(12,22,170.80,'待支付','2024-08-23 10:25:45'),(13,8,145.20,'已发货','2024-08-23 10:28:00'),(14,16,190.00,'待发货','2024-08-23 10:30:15'),(15,11,125.50,'已支付','2024-08-23 10:32:30'),(16,19,165.20,'待支付','2024-08-23 10:34:45'),(17,5,130.00,'已发货','2024-08-23 10:37:00'),(18,20,175.80,'待发货','2024-08-23 10:39:15'),(19,13,140.50,'已支付','2024-08-23 10:41:30'),(20,14,155.20,'待支付','2024-08-23 10:43:45'),(21,9,135.50,'已发货','2024-08-23 10:46:00'),(22,23,185.80,'待发货','2024-08-23 10:48:15'),(23,17,160.50,'已支付','2024-08-23 10:50:30'),(24,12,145.20,'待支付','2024-08-23 10:52:45'),(25,3,130.00,'已发货','2024-08-23 10:55:00'),(26,8,115.50,'已支付','2024-08-23 10:57:15'),(27,19,120.20,'待支付','2024-08-23 10:59:30'),(28,6,145.50,'已发货','2024-08-23 11:01:45'),(29,14,130.20,'待支付','2024-08-23 11:04:00'),(30,5,125.50,'已支付','2024-08-23 11:06:15'),(31,21,135.20,'待支付','2024-08-23 11:08:30'),(32,7,140.50,'已发货','2024-08-23 11:10:45'),(33,16,120.20,'待支付','2024-08-23 11:13:00'),(34,10,135.50,'已支付','2024-08-23 11:15:15'),(35,2,140.20,'待支付','2024-08-23 11:17:30'),(36,12,145.20,'待支付','2024-08-23 12:00:00'),(37,15,130.20,'已支付','2024-08-23 12:02:15'),(38,20,125.50,'待发货','2024-08-23 12:04:30'),(39,17,135.20,'已支付','2024-08-23 12:06:45'),(40,4,140.50,'待支付','2024-08-23 12:09:00'),(41,10,120.20,'已发货','2024-08-23 12:11:15'),(42,13,135.50,'已支付','2024-08-23 12:13:30'),(43,18,145.20,'待支付','2024-08-23 12:15:45'),(44,6,130.20,'已发货','2024-08-23 12:18:00'),(45,11,125.50,'已支付','2024-08-23 12:20:15'),(46,19,135.20,'待支付','2024-08-23 12:22:30'),(47,5,140.50,'已发货','2024-08-23 12:24:45'),(48,20,120.20,'待支付','2024-08-23 12:27:00'),(49,17,135.50,'已支付','2024-08-23 12:29:15'),(50,4,145.20,'待支付','2024-08-23 12:31:30'),(51,10,130.20,'已发货','2024-08-23 12:33:45'),(52,13,125.50,'已支付','2024-08-23 12:36:00'),(53,18,135.20,'待支付','2024-08-23 12:38:15'),(54,6,140.50,'已发货','2024-08-23 12:40:30'),(55,11,120.20,'待支付','2024-08-23 12:42:45'),(56,19,135.50,'已支付','2024-08-23 12:45:00'),(57,5,145.20,'待支付','2024-08-23 12:47:15'),(58,20,130.20,'已发货','2024-08-23 12:49:30'),(59,17,125.50,'已支付','2024-08-23 13:01:45'),(60,4,135.20,'待支付','2024-08-23 13:04:00'),(61,10,140.50,'已发货','2024-08-23 13:06:15'),(62,13,120.20,'待支付','2024-08-23 13:08:30'),(63,18,135.50,'已支付','2024-08-23 13:10:45'),(64,6,145.20,'待支付','2024-08-23 13:13:00'),(65,11,130.20,'已发货','2024-08-23 13:15:15'),(66,19,125.50,'已支付','2024-08-23 13:17:30'),(67,5,135.20,'待支付','2024-08-23 13:19:45'),(68,20,140.50,'已发货','2024-08-23 13:22:00'),(69,17,120.20,'待支付','2024-08-23 13:24:15'),(70,4,135.50,'已支付','2024-08-23 13:26:30'),(71,10,145.20,'待支付','2024-08-23 13:28:45'),(72,13,130.20,'已发货','2024-08-23 13:31:00'),(73,18,125.50,'已支付','2024-08-23 13:33:15'),(74,6,135.20,'待支付','2024-08-23 13:35:30'),(75,11,140.50,'已发货','2024-08-23 13:37:45'),(76,19,120.20,'待支付','2024-08-23 13:40:00'),(77,5,135.50,'已支付','2024-08-23 13:42:15'),(78,20,145.20,'待支付','2024-08-23 13:44:30'),(79,17,130.20,'已发货','2024-08-23 13:46:45'),(80,4,125.50,'已支付','2024-08-23 13:49:00'),(81,10,135.20,'待支付','2024-08-23 13:51:15'),(82,13,140.50,'已发货','2024-08-23 13:53:30'),(83,18,120.20,'待支付','2024-08-23 13:55:45'),(84,6,135.50,'已支付','2024-08-23 13:58:00'),(85,11,145.20,'待支付','2024-08-23 14:00:15'),(86,19,130.20,'已发货','2024-08-23 14:02:30'),(87,5,125.50,'已支付','2024-08-23 14:04:45'),(88,20,135.20,'待支付','2024-08-23 14:07:00'),(89,17,140.50,'已发货','2024-08-23 14:09:15'),(90,4,120.20,'待支付','2024-08-23 14:11:30'),(91,10,135.50,'已支付','2024-08-23 14:13:45'),(92,13,145.20,'待支付','2024-08-23 14:16:00'),(93,18,130.20,'已发货','2024-08-23 14:18:15'),(94,6,125.50,'已支付','2024-08-23 14:20:30'),(95,11,135.20,'待支付','2024-08-23 14:22:45'),(96,19,140.50,'已发货','2024-08-23 14:25:00'),(97,5,120.20,'待支付','2024-08-23 14:27:15'),(98,20,135.50,'已支付','2024-08-23 14:29:30'),(99,17,145.20,'待支付','2024-08-23 14:31:45'),(100,4,130.20,'已发货','2024-08-23 14:34:00'),(101,10,125.50,'已支付','2024-08-23 14:36:15'),(102,13,135.20,'待支付','2024-08-23 14:38:30'),(103,18,140.50,'已发货','2024-08-23 14:40:45'),(104,16,120.20,'待支付','2024-08-23 14:43:00'),(105,12,135.50,'已支付','2024-08-23 14:45:15'),(106,3,145.20,'待支付','2024-08-23 14:47:30'),(107,8,130.20,'已发货','2024-08-23 14:49:45'),(108,19,125.50,'已支付','2024-08-23 14:52:00'),(109,6,135.20,'待支付','2024-08-23 14:54:15'),(110,14,140.50,'已发货','2024-08-23 14:56:30'),(111,10,120.20,'待支付','2024-08-23 14:58:45'),(112,13,135.50,'已支付','2024-08-23 15:01:00'),(113,18,145.20,'待支付','2024-08-23 15:03:15'),(114,6,130.20,'已发货','2024-08-23 15:05:30'),(115,11,125.50,'已支付','2024-08-23 15:07:45'),(116,19,135.20,'待支付','2024-08-23 15:10:00'),(117,5,140.50,'已发货','2024-08-23 15:12:15'),(118,20,120.20,'待支付','2024-08-23 15:14:30'),(119,17,135.50,'已支付','2024-08-23 15:16:45'),(120,4,145.20,'待支付','2024-08-23 15:19:00'),(121,10,130.20,'已发货','2024-08-23 15:21:15'),(122,13,125.50,'已支付','2024-08-23 15:23:30'),(123,18,135.20,'待支付','2024-08-23 15:25:45'),(124,6,140.50,'已发货','2024-08-23 15:28:00'),(125,11,120.20,'待支付','2024-08-23 15:30:15'),(126,19,135.50,'已支付','2024-08-23 15:32:30'),(127,5,145.20,'待支付','2024-08-23 15:34:45'),(128,20,130.20,'已发货','2024-08-23 15:37:00'),(129,17,125.50,'已支付','2024-08-23 15:39:15'),(130,4,135.20,'待支付','2024-08-23 15:41:30'),(131,10,140.50,'已发货','2024-08-23 15:43:45'),(132,13,120.20,'待支付','2024-08-23 15:46:00'),(133,18,135.50,'已支付','2024-08-23 15:48:15'),(134,6,145.20,'待支付','2024-08-23 15:50:30'),(135,11,130.20,'已发货','2024-08-23 15:52:45'),(136,19,125.50,'已支付','2024-08-23 15:55:00'),(137,5,135.20,'待支付','2024-08-23 15:57:15'),(138,20,140.50,'已发货','2024-08-23 15:59:30'),(139,17,120.20,'待支付','2024-08-23 16:01:45'),(140,4,135.50,'已支付','2024-08-23 16:04:00'),(141,10,145.20,'待支付','2024-08-23 16:06:15'),(142,13,130.20,'已发货','2024-08-23 16:08:30'),(143,18,125.50,'已支付','2024-08-23 16:10:45'),(144,6,135.20,'待支付','2024-08-23 16:13:00'),(145,11,140.50,'已发货','2024-08-23 16:15:15'),(146,19,120.20,'待支付','2024-08-23 16:17:30'),(147,5,135.50,'已支付','2024-08-23 16:19:45'),(148,20,145.20,'待支付','2024-08-23 16:22:00'),(149,17,130.20,'已发货','2024-08-23 16:24:15'),(150,4,125.50,'已支付','2024-08-23 16:26:30'),(151,10,135.20,'待支付','2024-08-23 16:28:45'),(152,13,140.50,'已发货','2024-08-23 16:31:00'),(153,18,120.20,'待支付','2024-08-23 16:33:15'),(154,6,135.50,'已支付','2024-08-23 16:35:30'),(155,11,145.20,'待支付','2024-08-23 16:37:45'),(156,19,130.20,'已发货','2024-08-23 16:40:00'),(157,5,125.50,'已支付','2024-08-23 16:42:15'),(158,20,135.20,'待支付','2024-08-23 16:44:30'),(159,17,140.50,'已发货','2024-08-23 16:46:45'),(160,4,120.20,'待支付','2024-08-23 16:49:00'),(161,10,135.50,'已支付','2024-08-23 16:51:15'),(162,13,145.20,'待支付','2024-08-23 16:53:30'),(163,18,130.20,'已发货','2024-08-23 16:55:45'),(164,6,125.50,'已支付','2024-08-23 16:58:00'),(165,11,135.20,'待支付','2024-08-23 17:00:15'),(166,19,140.50,'已发货','2024-08-23 17:02:30'),(167,5,120.20,'待支付','2024-08-23 17:04:45'),(168,20,135.50,'已支付','2024-08-23 17:07:00'),(169,17,145.20,'待支付','2024-08-23 17:09:15'),(170,4,130.20,'已发货','2024-08-23 17:11:30'),(171,10,125.50,'已支付','2024-08-23 17:13:45'),(172,13,135.20,'待支付','2024-08-23 17:16:00'),(173,18,140.50,'已发货','2024-08-23 17:18:15'),(174,6,120.20,'待支付','2024-08-23 17:20:30'),(175,11,135.50,'已支付','2024-08-23 17:22:45'),(176,19,145.20,'待支付','2024-08-23 17:25:00'),(177,5,130.20,'已发货','2024-08-23 17:27:15'),(178,20,125.50,'已支付','2024-08-23 17:29:30'),(179,17,135.20,'待支付','2024-08-23 17:31:45'),(180,4,140.50,'已发货','2024-08-23 17:34:00'),(181,10,120.20,'待支付','2024-08-23 17:36:15'),(182,13,135.50,'已支付','2024-08-23 17:38:30'),(183,18,145.20,'待支付','2024-08-23 17:40:45'),(184,6,130.20,'已发货','2024-08-23 17:43:00'),(185,11,125.50,'已支付','2024-08-23 17:45:15'),(186,19,135.20,'待支付','2024-08-23 17:47:30'),(187,5,140.50,'已发货','2024-08-23 17:49:45'),(188,20,120.20,'待支付','2024-08-23 17:52:00'),(189,17,135.50,'已支付','2024-08-23 17:54:15'),(190,4,145.20,'待支付','2024-08-23 17:56:30'),(191,10,130.20,'已发货','2024-08-23 17:58:45'),(192,13,125.50,'已支付','2024-08-23 18:01:00'),(193,18,135.20,'待支付','2024-08-23 18:03:15'),(194,6,140.50,'已发货','2024-08-23 18:05:30'),(195,11,120.20,'待支付','2024-08-23 18:07:45'),(196,19,135.50,'已支付','2024-08-23 18:10:00'),(197,5,145.20,'待支付','2024-08-23 18:12:15'),(198,20,130.20,'已发货','2024-08-23 18:14:30'),(199,17,125.50,'已支付','2024-08-23 18:16:45'),(200,4,135.20,'待支付','2024-08-23 18:19:00'),(201,10,140.50,'已发货','2024-08-23 18:21:15'),(202,13,120.20,'待支付','2024-08-23 18:23:30'),(203,18,135.50,'已支付','2024-08-23 18:25:45'),(204,6,145.20,'待支付','2024-08-23 18:28:00'),(205,11,130.20,'已发货','2024-08-23 18:30:15'),(206,19,125.50,'已支付','2024-08-23 18:32:30'),(207,5,135.20,'待支付','2024-08-23 18:34:45'),(208,20,140.50,'已发货','2024-08-23 18:37:00'),(209,17,120.20,'待支付','2024-08-23 18:39:15'),(210,4,135.50,'已支付','2024-08-23 18:41:30'),(211,10,145.20,'待支付','2024-08-23 18:43:45');

在这里插入图片描述

部署算力服务器

访问腾讯云 HAI 官网:https://cloud.tencent.com/product/hai
控制台:https://console.cloud.tencent.com/hai/instance?rid=8

基本信息

高性能应用服务(Hyper Application Inventor,HAI)是一款面向AI、科学计算的GPU算力服务产品,提供即插即用的澎湃算力与常见环境。
助力中小企业及开发者快速部署LLM、AI作画、数据科学等高性能应用,原生集成配套的开发工具与组件,大幅提高应用层的开发生产效率。在这里插入图片描述

选择应用

点击界面的新建。
选择社区应用,以及选择Llama3.1 8B大模型,其他都是默认选择就行。在这里插入图片描述
在这里插入图片描述

应用详情

感兴趣的小伙伴可以点击查看此应用的详细信息。
地址:https://cloud.tencent.com/developer/article/2439066在这里插入图片描述

查看HAI

完成上面步骤后,可以在算力管理查看,再点击服务器名称进入详情界面。在这里插入图片描述
确保6399端口是开放在这里插入图片描述
如果未配置,则可以新建一个。在这里插入图片描述

本地python环境搭建

下载地址

访问python官网:https://www.python.org/downloads/release/python-31011/
下载符合自己服务器的python版本(推荐3.10.11)在这里插入图片描述
双击安装包安装python,window版本需要勾选add python to PATH在这里插入图片描述

安装依赖

运行pip命令安装依赖包,请分别运行以下pip命令逐个安装

pip install openai 
pip install langchain 
pip install langchain-core 
pip install langchain-community 
pip install mysql-connector-python 
pip install streamlit 
pip install plotly 
pip install numpy
pip install pandas
pip install watchdog
pip install matplotlib
pip install kaleido

如果上面安装速度比较慢,那么可以考虑使用国内镜像。
这里要特别注意,是小写 -i,不能是大写。

国内比较速度相对比较快的PyPI源库
1、清华大学:https://pypi.tuna.tsinghua.edu.cn/simple(推荐)
2、阿里云:http://mirrors.aliyun.com/pypi/simple
3、豆瓣:http://pypi.douban.com/simple

===例子===
pip install openai -i https://pypi.tuna.tsinghua.edu.cn/simple

下面是博主使用清华大学的镜像

pip install openai -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install langchain -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install langchain-core -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install langchain-community -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install mysql-connector-python  -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install streamlit  -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install plotly -i https://pypi.tuna.tsinghua.edu.cn/simple(用清华镜像可以,并且注意是小写i,不是大写I)
pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install watchdog -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install kaleido -i https://pypi.tuna.tsinghua.edu.cn/simple

构建应用

搭建项目框架

1.新建名为 workspace 文件夹进行保存项目代码
2.在项目文件夹(workspace)中新建配置文件 config.yaml
3.在项目文件夹(workspace)中新建应用主文件 text2sql2plotly.py

配置文件代码

database: 
  db_user: root
  db_password: tencent_TDSQL
  db_host: sh-cynosdbmysql-grp-9d8prc9o.sql.tencentcdb.com
  db_port: 21919
  db_name: shop

hai:
  model: llama3.1:8b
  base_url: http://82.156.229.112:6399

  • database配置说明

数据库读写示例:https://console.cloud.tencent.com/cynosdb/mysql/ap-shanghai/cluster/cynosdbmysql-58ufm8lc/detail
在这里插入图片描述

  • hai配置说明
    在这里插入图片描述

详细说明

这里主要分为 database 配置 和 hai 的配置

  • database 的配置详解:
  • db_user: 数据库账号,默认为 root
  • db_password: 创建数据库时的密码
  • db_host: 数据库连接地址
  • db_port: 数据库公网端口
  • db_name 创建的数据库名称,如果按手册来默认是 shop
  • hai 配置详解:
  • model 使用的大模型
  • base_url 模型暴露的 api 地址,是公网 ip 和端口的组合,默认 llama端口是6399

应用开发代码

复制下面代码,可以不用进行任何代码的改动,直接运行就可以使用。

from langchain_community.utilities import SQLDatabase
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import yaml
import mysql.connector
from decimal import Decimal
import plotly.graph_objects as go
import plotly
import pkg_resources
import matplotlib

yaml_file_path = 'config.yaml'

with open(yaml_file_path, 'r') as file:
    config_data = yaml.safe_load(file)

#获取所有的已安装的pip包
def get_piplist(p):
    return [d.project_name for d in pkg_resources.working_set]


#获取llm用于提供AI交互
ollama = ChatOllama(model=config_data['hai']['model'],base_url=config_data['hai']['base_url'])

db_user = config_data['database']['db_user']
db_password = config_data['database']['db_password']
db_host = config_data['database']['db_host']
db_port= config_data['database']['db_port']
db_name = config_data['database']['db_name']
# 获得schema
def get_schema(db):
    
    schema = mysql_db.get_table_info()
    return schema
def getResult(content):
    global mysql_db
    # 数据库连接
    mysql_db = SQLDatabase.from_uri(f"mysql+mysqlconnector://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}")
    # 获得 数据库中表的信息
    #mysql_db_schema = mysql_db.get_table_info()
    #print(mysql_db_schema)
    template = """基于下面提供的数据库schema, 根据用户提供的要求编写sql查询语句,要求尽量使用最优sql,每次查询都是独立的问题,不要收到其他查询的干扰:
    {schema}
    Question: {question}
    只返回sql语句,不要任何其他多余的字符,例如markdown的格式字符等:
    如果有异常抛出不要显示出来
    """
    prompt = ChatPromptTemplate.from_template(template)
    text_2_sql_chain = (
                RunnablePassthrough.assign(schema=get_schema)
                | prompt
                | ollama
                | StrOutputParser()
        )
    
    # 执行langchain 获取操作的sql语句
    sql = text_2_sql_chain.invoke({"question": content})

    print(sql)
    #连接数据库进行数据的获取
    # 配置连接信息
    conn = mysql.connector.connect(
    
        host=db_host,
        port=db_port,
        user=db_user,
        password=db_password,
        database=db_name
    )
    # 创建游标对象
    cursor = conn.cursor()
    # 查询数据
    cursor.execute(sql.strip("```").strip("```sql"))
    info = cursor.fetchall()
    # 打印结果
    #for row in info:
        #print(row)
    # 关闭游标和数据库连接
    cursor.close()
    conn.close()
    #根据数据生成对应的图表
    print(info)
    template2 = """
    以下提供当前python环境已经安装的pip包集合:
    {installed_packages};
    请根据data提供的信息,生成是一个适合展示数据的plotly的图表的可执行代码,要求如下:
        1.不要导入没有安装的pip包代码
        2.如果存在多个数据类别,尽量使用柱状图,循环生成时图表中对不同数据请使用不同颜色区分,
        3.图表要生成图片格式,保存在当前文件夹下即可,名称固定为:图表.png,
        4.我需要您生成的代码是没有 Markdown 标记的,纯粹的编程语言代码。
        5.生成的代码请注意将所有依赖包提前导入, 
        6.不要使用iplot等需要特定环境的代码
        7.请注意数据之间是否可以转换,使用正确的代码
        8.不需要生成注释
    data:{data}

    这是查询的sql语句与文本:

    sql:{sql}
    question:{question}
    返回数据要求:
    仅仅返回python代码,不要有额外的字符
    """
    prompt2 = ChatPromptTemplate.from_template(template2)
    data_2_code_chain = (
                RunnablePassthrough.assign(installed_packages=get_piplist)
                | prompt2
                | ollama
                | StrOutputParser()
        )
    
    # 执行langchain 获取操作的sql语句
    code = data_2_code_chain.invoke({"data": info,"sql":sql,'question':content})
    
    #删除数据两端可能存在的markdown格式
    print(code.strip("```").strip("```python"))
    exec(code.strip("```").strip("```python"))
    return {"code":code,"SQL":sql,"Query":info}


# 构建展示页面
import streamlit
# 设置页面标题
streamlit.title('AI驱动的数据库TDSQL-C 电商可视化分析小助手')
# 设置对话框
content = streamlit.text_area('请输入想查询的信息', value='', max_chars=None)
# 提问按钮 # 设置点击操作
if streamlit.button('提问'):
    #开始ai及langchain操作
    if content:
        #进行结果获取
        result = getResult(content)
        #显示操作结果
        streamlit.write('AI生成的SQL语句:')
        streamlit.write(result['SQL'])
        streamlit.write('SQL语句的查询结果:')
        streamlit.write(result['Query'])
        streamlit.write('plotly图表代码:')
        streamlit.write(result['code'])
        # 显示图表内容(生成在getResult中)
    streamlit.image('./图表.png', width=800) 

运行和效果

打开终端执行以下命令

streamlit run text2sql2plotly.py

在这里插入图片描述
页面效果图
在这里插入图片描述
在这里插入图片描述

踩坑经验

完成所有依赖安装后,运行发现出现下面报错,这个时候就需要安装下下面

未找到模块

pip install setuptools

在这里插入图片描述
在这里插入图片描述

未找到表

这里出现未找到表,其实是大模型幻觉问题,多运行几次就好
在这里插入图片描述

输出效果

输入:查询一下每类商品的名称和对应的销售总额

  • 测试效果
    在这里插入图片描述
    在这里插入图片描述

整体体验下来,还是非常不错的。可以看到腾讯云TDSQL在线创建非常方便快捷,完全不用再像当年一样,要在服务器创建数据库。
同时部署HAI算力服务器也非常简单,完成应用运行后,直接就是一句话就能帮我们统计需要的图表数据,真正开始智能化方向发展。
AI驱动的数据库TDSQL-C 电商可视化分析小助手,值得拥有,感兴趣的小伙伴,快来体验吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2122889.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学工控必须知道的变频器字母符号

#变频器##变频器故障##伺服电机##电工##电工#工控人加入PLC工业自动化精英社群 工控人加入PLC工业自动化精英社群

windows软件应该安装在哪里

100%原创动力 文章目录 前言一、安装路径二、数据文件夹1.用户文件夹2.AppData 三、为什么需要管理员权限四、绿色软件 前言 windows软件应该安装在哪里 一、安装路径 windows系统安装软件应该安装在哪里,根据windows规范应该安装在某个盘的 Program Files 目录…

ICP备案办理的流程中股东附件不显示如何解决

ICP备案办理的流程中股东附件不显示如何解决 问题解决方案注意吐槽 问题 问题弹窗: 部分一级股东没有上传证照附件,请检查并上传。 问题内容: 在【股东追溯及其相关证明材料】这一页中无法保存,提示要上传证照附件,但这边找不到任…

dwg2text抽取dwg文件文字不完整分析

libdxfrw项目中dxf2text命令可以抽取dwg文件中的文字部分,编译完工程后对手头上的dwg文件提取时发现抽取不完整,对源码进行分析时发现该命令只处理了text部分,不处理mtext部分 bool dx_iface::printText(const std::string& fileI, dx_da…

Cross-Encoder实现文本匹配(重排序模型)

引言 前面几篇文章都是基于表示型的方法训练BERT进行文本匹配,而本文是以交互型的方法。具体来说,将待匹配的两个句子拼接成一个输入喂给BERT模型,最后让其输出一个相似性得分。 文本匹配系列文章先更新到此,目前为止都是基于监督…

AI大模型行业专题报告:大模型发展迈入爆发期,开启AI新纪元

大规模语言模型(Large Language Models,LLM)泛指具有超大规模参数或者经过超大规模数据训练所得到的语言模型。与传统语言模型相比,大语言模型的构建过程涉及到更为复杂的训练方法,进而展现出了强大的自然语言理解能力…

网络药理学:1、文章基本思路、推荐参考文献、推荐视频

文章基本思路 选择一味中药或者中药复方(常见的都是选择一味中药,如:大黄、银柴胡等),同时选择一个要研究的疾病(如食管癌等)获得中药的主要化学成分或者说活性成分(有时候也以化合…

一款专为网络专业人士设计的多功能扫描工具,支持主机存活探测、端口扫描、服务爆破、漏洞扫描等功能

前言 在网络维护和安全检测中,有效的工具对于提高-效率至关重要。传统的网络扫描工具往往功能单一,需要多个工具配合使用,这不仅增加了工作的复杂度,还可能因为工具间的兼容性问题导致工作效率下降。面对这样的挑战,我…

深度解析 | 二元Logistic回归模型(单因素筛查、软件操作及结果解读)

一、Logistic回归的类型 Logistic回归(又称逻辑回归)是一种广义的线性回归分析模型,用于研究分类型因变量与自变量之间影响关系。Logistic回归分析根据因变量的不同可分为二元Logistic回归、多分类Logistic回归,有序Logistic回归…

大牛直播SDK最经典的一句

搜索引擎搜大牛直播SDK,居然提示我搜“大牛直播SDK最经典的一句”,闲来无事,点开看看,AI智能问答,给出了答案: ‌大牛直播SDK最经典的一句是:"我们只做最擅长的部分,我们不做的,提供对接接…

《向量数据库指南》——解锁AI新篇章:高效处理非结构化数据的五大策略

在探讨如何有效处理非结构化数据这一AI发展的核心挑战时,我们首先需要深入理解非结构化数据的本质特性及其带来的技术难题,进而探讨当前技术生态中的不足与机遇,并提出一系列专业且可操作的解决方案。 非结构化数据的四大挑战 1. 数量庞大: 非结构化数据,如文本、图像、…

图为科技基于昇腾AI,打造智慧工厂检测解决方案

中国作为全球制造业的翘楚,在工业领域成就斐然。因工业生产的特殊环境与工艺要求,面临着高温、高压、易燃易爆等多重高危因素。 其生产装置通常大型化且密集,生产工艺复杂,生产过程紧密耦合。在这样的背景下,围绕“人…

springboot汽车租赁系统-计算机毕业设计源码65876

目录 第 1 章 引 言 1.1 选题背景 1.2 研究现状 1.3 论文结构安排 第 2 章 系统的需求分析 2.1 系统可行性分析 2.1.1 技术方面可行性分析 2.1.2 经济方面可行性分析 2.1.3 法律方面可行性分析 2.1.4 操作方面可行性分析 2.2 系统功能需求分析 2.3 系统性需求分析 …

金智维K-RPA基本介绍

一、K-RPA基本组成 K-RPA软件机器人管理系统基于“RPAX”数字化技术打造,其核心系统由管理中心(Server)、设计器(Control)、机器人(Robot/Agent)三大子系统组成,各子系统协同工作,易于构建协同式环境。 管理中心(Server&#xff…

测试人员必备的linux命令(已分组)

文件与目录管理 查看当前目录:pwd 列出目录内容:ls [-l] (-l 参数显示详细信息) 切换目录:cd [目录名] 创建目录:mkdir [-p] 目录名 (-p 可以递归创建目录) 删除空目录&#xf…

NVDLA专题14:Runtime environment-用户模式驱动

运行时环境(runtime environment)包括在兼容的NVDLA硬件上运行编译神经网络的软件。 它由两部分组成: 用户模式驱动(User Mode Driver, UMD): 这是应用程序的主接口,正如Compile library中所详述的,对神经…

数据看板多端查看无压力,教你轻松设置响应式布局

最近,山海鲸可视化新增了一个非常实用的功能,叫作“响应式布局”。今天我来为大家介绍一下这个新功能以及它如何提升我们在不同设备上的使用体验。 你可能在用手机浏览网页时注意到,有些网站在手机和电脑上的显示方式几乎相同。然而&#xff…

讯方·智汇云校北京校区

讯方智汇云校北京校区介绍 讯方技术紧抓国家数智化转型契机,依托京西智谷,建立AI智算产业人才能力中心,提供智算全流程服务和智算人才培养。研发了讯方AI场景创新工坊、讯方AI行业支撑智能体等核心产品,同时导入华为全系列智算人…

C++20中头文件bit的使用

C20中头文件bit是数字库(numeric library)的一部分,定义用于访问、操作和处理单个位和位序列(individual bits and sequences of bits)的函数。 1.std::endian:指示标量类型的字节序(byte order),支持little(小端序)、big(大端序)、native: 如果所有标量…

AI大模型行业深度:行业现状、应用情况、产业链及相关公司深度梳理

随着人工智能技术的迅猛发展,AI大模型已经成为全球科技竞争的焦点、未来产业的关键赛道以及经济发展的新动力,展现出巨大的发展潜力和广阔的应用前景。目前,AI大模型的应用落地引发行业关注。技术的持续进步促使AI大模型的应用逐步从云端向终…