Prompt工程师压箱底绝活——Prompt的基本组成部分、格式化输出与应用构建

news2025/1/17 5:53:20

image.png

目前,大模型输出往往包含许多冗余信息。本文中,基于文心一言,我们给出了一种包含指令、输入数据、背景信息和输出提示的提示词结构,让大模型能够真正直击应用开发者的需求,严格执行开发者的指令,为大模型的原生应用奠定了基础。

01 前言

Prompt 中文为“提示词”。在大语言模型中,Prompt 的作用主要是给大语言模型提示输入信息的上下文和输入模型的参数信息。可以将 Prompt 类比于人类交流中的提示或者线索,帮助大语言模型理解开发者的意图,根据线索提供恰当的响应或者输出。

Prompt 的设计对模型输出的质量和相关性起决定性作用。然而,现有的提示词资源,尽管一定程度上为开发者提供了便利,但它们仍存在一些具体的问题。

问题一:提示词缺乏理论体系。虽然已有大量的提示词资源可供使用,开发者在实践中仍然面临如何有效编写提示词的挑战。这是因为目前尚未形成一套完整的理论体系来指导用户如何构建和优化提示词。长期以来,在尝试和应用各式提示词的过程中,开发者缺乏方法论的支撑,无法系统地提炼经验、归纳规律,从而难以掌握编写高效提示词的技巧,这种情况不仅限制了 Prompt 的潜力发挥,也阻碍了开发者充分利用 AI 模型的能力。

问题二:输出与开发者期望不符。当前的大语言模型在处理复杂的开发者输入时,常常无法直接生成符合开发者具体需求的结果。模型输出的信息可能需要开发者进行额外的人工编辑和调整,才能达到可用的状态。开发者必须投入额外的时间和精力来修正并完善 AI 的原始输出,这不仅降低了效率,也影响了开发者体验。

因此,为了帮助开发者更深刻地理解和有效地使用提示词,本文将重点从两个主要角度展开讨论:

  1. Prompt 基本组成部分。包括指令(Instruction)、输入数据(Input Data)、背景信息(Context)以及输出指示器(Output Indicator),这些构成了提示词的核心要素,对于设计有效的 AI 交互至关重要;

  2. Prompt 进阶应用。基于 Prompt 的格式化结果输出,探讨如何通过精确的提示词来格式化 AI 的输出结果,以突显提示词大模型的独特价值和应用潜力。

通过这两个层面的分析,用户将能够更加精准地制定和使用提示词,以达成更优质的 AI 应用体验。

02 Prompt 基本组成部分

Prompt 设计是大语言模型互动的关键,它可以显著影响模型的输出结果质量。一个合理设计的 Prompt 应当包含以下四个元素:

1.指令(Instruction):这是 Prompt 中最关键的部分。指令直接告诉模型用户希望执行的具体任务。

2.输入数据(Input Data):输入数据是模型需要处理的具体信息。

3.背景信息(Context):背景信息为模型提供了执行任务所需的环境信息或附加细节。

4.输出指示器(Output Indicator):输出指示器定义了模型输出的期望类型或格式。

设计 Prompt 时,合理结合这四个元素,能够显著提升大语言模型的响应效果和输出质量。用户可以根据实际需求,选择性地包含某些元素。其中,指令是必不可少的,其他元素则根据情况来决定是否添加、如何添加,使得 Prompt 更加精炼和高效。通过仔细考虑和运用这些元素,用户将能够更好地引导大语言模型,获取更符合预期的结果。

用一个具体的例子进行演示。设想一个具体场景,想让大语言模型告诉我们一位学生说的话是“正确”还是“错误”的,以下是一份合理的提示词的构建过程。

1.指令(Instruction):请判断学生说的话是否正确

2.输入数据(Input Data):学生说的话:[学生说的话]

3.背景信息(Context):正确请使用’正确’表示,错误请使用’错误’表示

4.输出指示器(Output Indicator):输出格式:\n### 是否正确\n{是否正确}

将提示词进行组合,不同的内容用\n(换行符)分割:

指令:请判断学生说的话是否正确 \n 学生说的话:[学生说的话] \n 信息:正确请使用’正确’表示,错误请使用’错误’表示 \n 输出格式:\n###是否正确\n{是否正确}

03 基于 Prompt 的格式化结果

输出与正则表达式提取

在具体的问题解决中,特别是在 AI 技术的原生应用领域,对输出结果进行格式化是至关重要的一步。格式化输出不仅有助于维持结果的一致性,而且能够确保输出的数据可以被后续的分析和处理程序正确识别和使用。大语言模型很容易产生并包含多余信息的答案,这些答案虽然在语言上是正确的,但却不符合特定的格式要求,从而无法直接用于进一步的数据处理流程。

以一个具体的应用场景为例。我们希望模型能够指明一位学生说的话是“正确”还是“错误”。如果仅仅使用一个简单直接的 Prompt,通过文字方式表达需求,例如:

“请判断1+1=3是否正确,正确请使用’正确’表示,错误请使用’错误’表示,请仅输出’正确’和’错误’,请勿输出其他任何信息”

▎代码1

user_input = "请判断1+1=3是否正确,正确请使用'正确'表示,错误请使用'错误'表示,请仅输出'正确'和'错误',请勿输出其他任何信息"
response = erniebot.ChatCompletion.create(
    model='ernie-3.5',
    messages=[{
        'role': 'user',
        'content': user_input
    }])
print(response.get_result())
回答1:
在标准数学逻辑中,1+1=3是不正确的。

这样的指令可能仍然不足以保证模型输出的结果完全符合预期。AI 模型可能会产生包含额外解释或不必要信息的响应,干扰数据的自动化处理。

而实际上,如果使用 Prompt 基本组成部分中的结果,能够完善的生成结果:

"请判断学生说的话是否正确 \n 学生说的话:1+1=3 \n 信息:正确请使用’正确’表示,错误请使用’错误’表示 \n 输出格式:\n###是否正确\n{是否正确} "

▎代码2

user_input = "请判断学生说的话是否正确 \n 学生说的话:1+1=3 \n 信息:正确请使用'正确'表示,错误请使用'错误'表示 \n 输出格式:\n###是否正确\n{是否正确}"
response = erniebot.ChatCompletion.create(
    model='ernie-3.5',
    messages=[{
        'role': 'user',
        'content': user_input
    }])
print(response.get_result())
回答2:
###是否正确
错误

当多个需求需要实现时,也可以通过 Prompt 基础本组成部分实现,例如希望 AI 在判断的同时,能够指出学生的具体错误:

“请判断学生说的话是否正确 \n 学生说的话:1+1=3 \n 信息:正确请使用’正确’表示,错误请使用’错误’表示 \n 输出格式:\n###是否正确\n{是否正确} \n###学生的错误\n{学生的错误}”

▎代码3

user_input = "请判断学生说的话是否正确 \n 学生说的话:1+1=3 \n 信息:正确请使用'正确'表示,错误请使用'错误'表示 \n 输出格式:\n###是否正确\n{是否正确}"
response = erniebot.ChatCompletion.create(
    model='ernie-3.5',
    messages=[{
        'role': 'user',
        'content': user_input
    }])
print(response.get_result())
回答3:
###是否正确
错误
###学生的错误
学生的错误在于他们的加法计算不准确。他们认为1+1=3,但实际上1+1=2。

在基于大模型生成固定格式的输出结果后,一种常见的方式是基于正则表达式提取对应信息。正则表达式是一种强大的文本处理工具,它允许用户定义一种搜索模式,然后在文本中匹配这种模式。由于它们具有高度的灵活性和功能性,正则表达式成为了在自然语言处理、数据挖掘、日志文件分析等众多领域,从结构化或半结构化文本中提取信息的常用方法。

▎代码4

import re
text = response.get_result()
pattern_correctness = re.compile(r'###是否正确\n(.*?)\n###学生的错误', re.DOTALL)
pattern_error = re.compile(r'###学生的错误\n(.*)', re.DOTALL)
correctness_result = pattern_correctness.search(text)
error_result = pattern_error.search(text)
is_correct = correctness_result.group(1).strip() if correctness_result else None
student_error = error_result.group(1).strip() if error_result else None
print(f"{is_correct}")
print(f"{student_error}")
回答4:
错误
1+1=3是不正确的。因为根据数学的运算规则,1+1应该等于2而不是3。这个错误可能是因为学生在进行加法运算时发生了混淆或者疏忽。

在格式化生成大模型回复时,我们使用’###'作为提取标识,这样的格式化标签可以作为文本块的起始点,为正则匹配提供了明确的锚点。这种明确的标记方式,简化了正则表达式的编写。通过使用 Python 的 re 模块,可以实现基于大模型的特定信息提取。

正则表达式在信息提取方面是一个极其有用的工具,特别是当与大模型生成固定格式的输出结果后进行信息提取。基于提取信息的进一步加工能够让大模型助力各种应用的蓬勃发展!

04 基于飞桨星河社区开发 AI 应用

飞桨星河社区是百度潜心打造的专业大模型社区,为开发者提供算力、模型库、数据集、工具套件、实训项目、社区交流等全方位服务,使得开发者可以轻松地开展人工智能项目。

该平台的一大亮点是其轻量化的代码实现方式,允许用户通过简洁的代码就能够快速搭建和训练模型,大大降低了入门门槛。用户无需关心底层的环境配置,因为平台已经提供了预配置的开发环境,包括常用的机器学习和深度学习框架及库。这意味着用户可以直接在 Web 界面上编写代码,运行实验,而无需花费时间去安装和维护各种软件和硬件环境。

此外,飞桨星河社区的一个显著优势是其可访问性。用户可以直接访问平台,它确保了用户可以稳定和高效地连接到飞桨星河社区的服务,注册之后即可进入 Coding 界面快乐的编程啦!

▎常规提示词结构

import erniebot
erniebot.api_type = 'aistudio'
erniebot.access_token = '<your token>’
user_input = "请判断1+1=3是否正确,正确请使用'正确'表示,错误请使用'错误'表示,请仅输出'正确'和'错误',请勿输出其他任何信息"
response = erniebot.ChatCompletion.create(
    model='ernie-3.5',
    messages=[{
        'role': 'user',
        'content': user_input
    }])
print(response.get_result())

▎Prompt 基本组成部分+单任务格式化输出

import erniebot
erniebot.api_type = 'aistudio'
erniebot.access_token = '<your token>’
user_input = "请判断学生说的话是否正确 \n 学生说的话:1+1=3 \n 信息:正确请使用'正确'表示,错误请使用'错误'表示 \n 输出格式:\n###是否正确\n{是否正确}"
response = erniebot.ChatCompletion.create(
    model='ernie-3.5',
    messages=[{
        'role': 'user',
        'content': user_input
    }])
print(response.get_result())

▎Prompt 基本组成部分+多任务格式化输出

import erniebot
erniebot.api_type = 'aistudio'
erniebot.access_token = '<your token>’
user_input = "请判断学生说的话是否正确 \n 学生说的话:1+1=3 \n 信息:正确请使用'正确'表示,错误请使用'错误'表示 \n 输出格式:\n###是否正确\n{是否正确} \n###学生的错误\n{学生的错误}"
response = erniebot.ChatCompletion.create(
    model='ernie-3.5',
    messages=[{
        'role': 'user',
        'content': user_input
    }])
print(response.get_result())

随着通用大语言模型的发展和智能 Agent 技术的兴起,我们正迎来 AI 应用开发的一个新时代。无论是有深厚技术背景的开发者还是非技术人员,都能在这个新时代中找到属于自己的空间,开发自己的专属应用。AI 的未来,充满无限潜力和广阔天地,等待我们去探索和创造。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2121217.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

opencv实战项目二十二:模板匹配定位对象位置

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、opencv模板匹配介绍二、使用代码三、效果 前言 在现代计算机视觉领域&#xff0c;模板匹配是一种基础而强大的技术&#xff0c;它能够帮助我们在图像中找到…

k8s服务发布Ingress

Kubernetes暴露服务的方式目前只有三种&#xff1a;LoadBlancer Service、NodePort Service、Ingress&#xff0c;通俗来讲&#xff0c;ingress和之前提到的Service、Deployment&#xff0c;也是一个k8s的资源类型&#xff0c;ingress用于实现用域名的方式访问k8s内部应用。 In…

第 6 章图像聚类

本章将介绍几种聚类方法&#xff0c;并展示如何利用它们对图像进行聚类&#xff0c;从而寻找相似的图像组。聚类可以用于识别、划分图像数据集&#xff0c;组织与导航。此外&#xff0c;我们还会对聚类后的图像进行相似性可视化。 6.1 K-means聚类 K-means 是一种将输入数据划…

FLV 格式详解资料整理,关键帧格式解析写入库等等

FLV 是一种比较简单的视频封装格式。大致可以分为 FLV 文件头&#xff0c;Metadata元数据&#xff0c;然后一系列的音视频数据。 资料够多&#xff1a; FLV格式解析图 知乎用户 Linux服务器研究 画了一张格式解析图&#xff0c;比较全&#xff0c;但默认背景是白色&#xff…

2024年职业院校人工智能实训室方案解读(融入AIGC技术)

随着人工智能技术的飞速发展&#xff0c;职业院校作为技能型人才培养的重要基地&#xff0c;亟需加强人工智能实训室的建设&#xff0c;以应对市场需求和行业变革。该方案不仅涵盖了全面的人工智能教学内容&#xff0c;还融入了AIGC&#xff08;Artificial Intelligence Genera…

k8s笔记——kubebuilder实战

kubebuilder Kubebuilder 是一个基于 CRD 来构建 Kubernetes API 的框架&#xff0c;可以使用 CRD 来构建 API、Controller 和 Admission Webhook。 动机 目前扩展 Kubernetes 的 API 的方式有创建 CRD、使用 Operator SDK 等方式&#xff0c;都需要写很多的样本文件&#x…

​微图在线显示高程为什么与下载结果不一致

之前有客户向我们提出了在线显示的高程值和下载的数据高程值不一致的问题&#xff0c;这里解释一下不一致的原因。 在线显示 在线的情况分成两种&#xff0c;一种是浏览高程数据渲染地图&#xff0c;一种是非高程数据渲染地图&#xff0c;例如高清影像&#xff08;WGS84&…

小小GCD、LCM拿下拿下

目录 最大公约数&#xff08;GCD&#xff09; 最大公约数&#xff08;GCD&#xff09;求解&#xff1a; 一、辗转相除法 二、三目运算符 三、位运算 最大公约数&#xff08;GCD&#xff09;模板&#xff1a; 最大公约数&#xff08;GCD&#xff09;例题&#xff1a; 最…

SprinBoot+Vue酒店管理系统的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍&#xff1a;CSDN认证博客专家&#xff0c;CSDN平台Java领域优质…

安宝特方案 | 医疗AR眼镜,重新定义远程会诊体验

【AR眼镜&#xff1a;重新定义远程会诊体验】 在快速发展的医疗领域&#xff0c;安宝特医疗AR眼镜以其尖端技术和创新功能&#xff0c;引领远程会诊的未来&#xff0c;致力于为为医生和患者带来更高效、精准和无缝的医疗体验。 探索安宝特医疗AR眼镜如何在医疗行业中引领新风潮…

DolphinScheduler应用实战笔记

DolphinScheduler应用实战笔记 一、前言二、DS执行SQL或存储过程二、DS调用DataX同步数据三、DS调用HTTP接口四、DS依赖(DEPENDENT)节点五、DS SPARK 节点六、DS Flink 节点七、DS Flink 节点八、DS SQL 节点九、DS Java程序十、DS Python节点 一、前言 DolphinScheduler&…

Java实现在线聊天室

分为客户端和服务器端两个部分。服务器负责处理客户端之间的通信&#xff0c;客户端则提供一个用户界面来发送和接收消息。 技术栈 Java语言SocketSwingUI 要点 一个服务端&#xff0c;多台客户端每个客户端登录时输入用户名消息格式化&#xff1a;服务器接收到消息时&#…

数据资产管理:真能推动数据要素市场发展还是只是空谈?

数据资产管理&#xff1a;真能推动数据要素市场发展还是只是空谈&#xff1f; 前言数据资产管理 前言 数据已成为企业和组织的重要资产&#xff0c;其价值的充分发挥对于推动业务发展和提升竞争力至关重要。数据资产管理作为一种有效的管理手段&#xff0c;正逐渐受到广泛关注…

Open Source, Open Life 第九届中国开源年会论坛征集正式启动

中国开源年会 COSCon 是业界最具影响力的开源盛会之一&#xff0c;由开源社在2015年首次发起&#xff0c;而今年我们将迎来第九届 COSCon&#xff01; 以其独特定位及日益增加的影响力&#xff0c;COSCon 吸引了越来越多的国内外企业、高校、开源组织/社区的大力支持。与一般企…

java基础(1)数据类型,运算符,逻辑控制语句以及基本应用

目录 ​编辑 1.前言 2.正文 2.1数据类型与变量 2.1.1字面常量 2.1.2数据类型 2.1.3变量 2.1.3.1整型 2.1.3.2浮点型 2.1.3.3字符型 2.1.3.4布尔型 2.1.4类型转换与类型提升 2.1.4.1字符串的拼接 2.1.4.2整型转字符串 2.1.4.3字符串转整数 2.2运算符 2.2.1算术运…

小红书笔记数单日突破1.3万,8月全网都被这只猴子刷屏了!

8月20日早上10点&#xff0c;《黑神话&#xff1a;悟空》正式发布后立刻席卷全网&#xff0c;众多玩家在游戏正式发布后火速进入游戏界面&#xff0c;甚至有多家公司宣布放假让员工玩《黑神话悟空》&#xff0c;不论是玩游戏的、还是不玩游戏的&#xff0c;都为之献上巨大的关注…

一个让LLM更具创造力的“超级提示词“

1. “超级提示词” 开源项目简介 Github 上最近开源了一个名为 “超级提示词” (Super Prompt) 的项目&#xff0c;该项目旨在激发大语言模型&#xff08;LLM&#xff09;的创造力和发散思维。通过输入这些提示词&#xff0c;LLM 能够生成更多新颖的想法&#xff0c;对于需要创…

Linux网络:总结协议拓展

1. TCP/IP四层模型总结 2. 网络协议拓展 DNS协议&#xff08;地址解析协议&#xff09; TCP/IP使用IP地址和端口号来确定网络中一台主机的一个程序。 但是这样标定不方便记忆&#xff0c;于是开始引出主机名&#xff08;字符串&#xff09;&#xff0c;使用hosts文件来描述…

Monte Carlo方法解决强化学习问题

本文继续深入探讨蒙特卡罗 (MC)方法。这些方法的特点是能够仅从经验中学习,不需要任何环境模型,这与动态规划(DP)方法形成对比。 这一特性极具吸引力 - 因为在实际应用中,环境模型往往是未知的,或者难以精确建模转移概率。以21点游戏为例:尽管我们完全理解游戏规则,但通过DP方…

智慧教室无纸化同屏方案是否适用RTMP?

智慧教室无纸化方案技术背景 智慧教室无纸化方案是一种基于现代信息技术&#xff0c;旨在通过数字化手段实现教学过程的无纸化、智能化和高效化的解决方案。该方案以学生为中心&#xff0c;强调互动化的数字教学服务&#xff0c;旨在提升教学质量和学习效率&#xff0c;同时减…