【OpenCV2.2】图像的算术与位运算(图像的加法运算、图像的减法运算、图像的融合)、OpenCV的位运算(非操作、与运算、或和异或)

news2024/11/10 16:00:04

1 图像的算术运算
1.1 图像的加法运算
1.2 图像的减法运算
1.3 图像的融合
2 OpenCV的位运算
2.1 非操作
2.2 与运算
2.3 或和异或

1 图像的算术运算

1.1 图像的加法运算

  • add opencv使用add来执行图像的加法运算

图片就是矩阵, 图片的加法运算就是矩阵的加法运算, 这就要求加法运算的两张图shape必须是相同的.

# 图片加法
import cv2

cat = cv2.imread('./cat.jpeg')
dog = cv2.imread('./dog.jpeg')

# 加法要求两个图片大小一致
print(cat.shape)
print(dog.shape)
# 把猫的图片变小
# 注意坑. opencv中resize中传递新的宽度和高度, 先宽度再高度, 所有是先列后行, 和shape的输出反了.
new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
# 和单个数字运算, 超过255 会被截断, 相当于 % 256
print(new_cat[0:5, 0:5])
print(new_cat[0:5, 0:5] + 100) 
cv2.imshow('cat_dog', np.hstack((new_cat, dog)))
# 加法, 加法的效果是加起来如果超过255, 统一变成255
new_img = cv2.add(new_cat, dog)
print(new_img[0:5, 0:5])
cv2.imshow('cat_dog', np.hstack((new_cat, dog, new_img)))


cv2.waitKey(0)
cv2.destroyAllWindows()

请添加图片描述

1.2 图像的减法运算

  • subtract

  • opencv使用subtract来执行图像的减法运算, 图像对应位置的元素相减, 如果减完小于0, 统一变成0.

  # 图片减法
  import cv2
  
  cat = cv2.imread('./cat.jpeg')
  dog = cv2.imread('./dog.jpeg')
  
  # 加法要求两个图片大小一致
  print(cat.shape)
  print(dog.shape)
  # 把猫的图片变小
  # 注意坑. opencv中resize中传递新的宽度和高度, 先宽度再高度, 所有是先列后行, 和shape的输出反了.
  new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
  
  # 减法
  new_img = cv2.subtract(new_cat, dog)
  print(new_cat[0:5, 0:5], dog[0:5, 0:5])
  print(new_img[0:5, 0:5])
  cv2.imshow('cat_dog', np.hstack((new_cat, dog, new_img)))
  
  
  cv2.waitKey(0)
  cv2.destroyAllWindows()

请添加图片描述

  • 同样的还有乘法, 除法运算. cv2.mutiply, cv2.divide, 原理是类似的.

1.3 图像的融合

  • cv2.addWeighted(src1, alpha, src2, beta, gamma)

  • 图片的融合操作相当于对图片进行线性运算 w1* x1 + w2 * x2 + b. 其中alpha是第一个权重参数, beta是第二个权重参数, gamma是偏差.

    import cv2
    
    cat = cv2.imread('./cat.jpeg')
    dog = cv2.imread('./dog.jpeg')
    
    new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
    # 相当于res = new_cat * 0.4 + dog * 0.6 + 0
    res = cv2.addWeighted(new_cat, 0.4, dog, 0.6, 0)
    
    cv2.imshow('cat_dog', np.hstack((new_cat, dog, res)))
    
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    请添加图片描述

2 OpenCV的位运算

2.1 非操作

  • bitwise_not(img) 非操作的效果就相当于是用 255 - img

    import cv2
    import numpy as np
    
    cat = cv2.imread('./cat.jpeg')
    dog = cv2.imread('./dog.jpeg')
    
    cat_not = cv2.bitwise_not(cat)
    cat_not_not = cv2.bitwise_not(cat_not)
    cv2.imshow('not', np.hstack((cat, cat_not, cat_not_not)))
    print(cat[:3, :3])
    print(cat_not[:3, :3])
    print(cat_not_not[:3, :3]
          
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    请添加图片描述

2.2 与运算

  • bitwise_and(img1, img2) 与运算, 图片对应位置元素进行与操作. 表现出来的效果就是黑和黑与还是黑, 白和白与还是白.

    import cv2
    import numpy as np
    
    cat = cv2.imread('./cat.jpeg')
    dog = cv2.imread('./dog.jpeg')
    
    new_cat = cv2.resize(cat, (dog.shape[:-1][::-1]))
    cat_and_dog = cv2.bitwise_and(new_cat, dog)
    cv2.imshow('not', np.hstack((new_cat, cat_and_dog)))
    print('cat:', new_cat[:3, :3])
    print('-----------')
    print('dog:', dog[:3, :3])
    print('-----------')
    print(cat_and_dog[:3, :3])
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    请添加图片描述

2.3 或和异或

  • bitwise_or 或运算 对应元素做或运算

  • bitwise_xor 异或运算 对应元素做异或运算

    import cv2
    import numpy as np
    
    #创建一张图片
    img = np.zeros((200,200), np.uint8)
    img2 = np.zeros((200,200), np.uint8)
    
    img[20:120, 20:120] = 255
    img2[80:180, 80:180] = 255
    
    #new_img = cv2.bitwise_bit(img)
    #new_img = cv2.bitwise_and(img, img2)
    #new_img = cv2.bitwise_or(img, img2)
    new_img = cv2.bitwise_xor(img, img2)
    
    
    cv2.imshow('new_img', new_img)
    cv2.imshow('img', img)
    cv2.imshow('img2', img2)
    cv2.waitKey(0)
    
    

    请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2114317.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

notepad下载安装教程

一、强大高效的代码编辑器 Notepad 是一款功能强大的代码编辑器,专为程序员和开发人员设计。无论是编写代码、处理文本文件,还是进行快速编辑,Notepad 都能提供卓越的性能和便利的功能,极大提升您的工作效率。 二、安装详细教程…

双指针(5)_单调性_有效三角形的个数

个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 双指针(5)_单调性_有效三角形的个数 收录于专栏【经典算法练习】 本专栏旨在分享学习C的一点学习笔记,欢迎大家在评论区交流讨论💌 目录…

c++stack和list 介绍

stack介绍 堆栈是一种容器适配器,专门设计用于在 LIFO 上下文(后进先出)中运行,其中元素仅从容器的一端插入和提取。 堆栈作为容器适配器实现,容器适配器是使用特定容器类的封装对象作为其基础容器 的类,提…

mysql可重复读不能解决幻读吗?

1、可重复读和幻读的概念 1.1、可重复读 可重复读是数据库的四个隔离级别之一,可重复读可以保证在一个事物之内读取到的数据永远是相同的(通过mvcc表快照实现的),哪怕这期间有其它事务对数据做了修改,也不会影响当前事务的查询。 1.2、幻读 网上有不少博客说:幻读是一个事物内…

正规表达式例题

解析:从题意可知,a可以有零个或多个,b有1个或多个 选项A:这里a至少有1个,不符合题意 选项B:a^*bb^*,a是0个或多个,b可以是1个或多个,符合题意 选项C和选项D&#xff0…

Jenkins 通过 Version Number Plugin 自动生成和管理构建的版本号

步骤 1:安装 Version Number Plugin 登录 Jenkins 的管理界面。进入 “Manage Jenkins” -> “Manage Plugins”。在 “Available” 选项卡中搜索 “Version Number Plugin”。选中并安装插件,完成后可能需要重启 Jenkins。 步骤 2:配置…

尚品汇-支付宝下单接口显示二维码实现(四十六)

目录: (1)支付功能实现 (2)保存支付信息 (3)编写支付宝支付接口 (1)支付功能实现 支付宝有了同步通知为什么还需要异步通知? 同步回调两个作用 第一是从支付…

密保管家-随机密码本地生成

下载 简介 安全无忧:采用先进的加密算法,确保您的密码安全不外泄。 随机性强:每次生成的密码都是完全随机的,避免模式化,增加破解难度。 易于管理:简洁的界面设计让您轻松管理所有账号的密码。 独立运行:无需网络连接,所有数据本地存储,保护隐私的同时提供便捷的密…

【MATLAB】模拟退火算法

模拟退火算法的MATLAB实现 模拟退火算法简介模拟退火算法应用实例关于计算结果 模拟退火算法简介 1982年,Kirkpatrick 将退火思想引入组合优化领域,提出了一种能够有效解决大规模组合优化问题的算法,尤其对 NP 完全问题表现出显著优势。模拟…

FreeRTOS 优先级翻转以及互斥信号量

优先级翻转: 高优先级的任务反而慢执行,低优先级的任务反而优先执行 优先级翻转在抢占式内核中是非常常见的,但是在实时操作系统中是不允许出现优先级翻转的,因为优先级翻转会破坏任务的预期顺序,可能会导致未知的严重…

react | 自学笔记 | 持续更新

React自学速学笔记 数据单向流动事件为什么上述例子,是onClick{()>shoot("goal!")}而不是onClick{shoot("goal")}?event对象 条件渲染if方法&&?: 三元表达式 纯小白自学笔记,有不对的欢迎指正。 数据单向流动 单向流动…

如何确保光伏电站EPC施工的质量

说到保证EPC施工的质量,我们得先了解什么是EPC施工,是指:指总承包商按照合同约定,承担工程项目的设计、采购、施工等工作,并对工程的质量、安全、工期和造价全面负责。 EPC施工还有几个特点: 一体化服务&…

单片机毕业设计基于stm32的蔬菜大棚智能监控系统设计

文章目录 前言资料获取设计介绍功能介绍程序代码部分参考 设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP…

2.2.3 UDP的可靠传输协议QUIC 2

udp可靠传输 kcp协议 网络通畅下,kcp比tcp慢 这里直接看课件图片, 延迟ack比非延迟减少应答包数量,但是慢 kcp 讲解 kan代码ikcp.c 按照readme指南编译一下!! mkdir build cd build cmake .. make第一遍报错&#xf…

ant-design-vue中实现a-tree树形控件父子关联选中过滤的算法

在使用ant-design-vue的框架时,a-tree是比较常用的组件,比较适合处理树形结构的数据。 但是在与后台数据进行授权交互时,就不友好了。 在原生官方文档的例子中,若子项被勾选,则父级节点会被关联勾选,但这勾…

【堆的应用--C语言版】

前面一节我们都已将堆的结构(顺序存储)已经实现,对树的相关概念以及知识做了一定的了解。其中我们在实现删除操作和插入操作的时候,我们还同时实现了建大堆(小堆)的向上(下)调整算法…

【CSS in Depth 2 精译_024】4.2 弹性子元素的大小

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结) 1.1 层叠1.2 继承1.3 特殊值1.4 简写属性1.5 CSS 渐进式增强技术1.6 本章小结 第二章 相对单位(已完结) 2.1 相对…

PyInstaller问题解决 onnxruntime-gpu 使用GPU和CUDA加速模型推理

前言 在模型推理时,需要使用GPU加速,相关的CUDA和CUDNN安装好后,通过onnxruntime-gpu实现。 直接运行python程序是正常使用GPU的,如果使用PyInstaller将.py文件打包为.exe,发现只能使用CPU推理了。 本文分析这个问题…

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。 如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。 tomcat中有一个缓冲区 如果发送大批量数据后 又不处理 那么会堆积缓冲区 后面的请求会越来越慢。

Java架构师未来篇大模型

目录 1. 大模型的定义2 大模型相关概念区分3 大模型的发展历程4. 大模型的特点5 大模型的分类6 大模型的泛化与微调7 大模型岗位需求8 理解大模型8.1 生活中的比喻8.2 大模型的定义9 大模型工作9.1 数据的积累9.2 模型的训练9.3 预测和应用10 大模型的实际应用10.1 语言处理10.…