YOLOv5改进 | 模块缝合 | C3 融合REPVGGOREPA提升检测性能【详细步骤 完整代码】

news2024/11/16 7:53:37

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv5入门 + 改进涨点》专栏介绍 & 专栏目录 |目前已有80+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进


结构重参数化技术在计算机视觉领域日益受到重视,它能在不增加推理成本的情况下提升深度学习模型性能。本文将介绍了一种C2f融合REPVGGOREPA的方法,通过将复杂训练模块简化为单次卷积来降低训练成本。能显著减少内存消耗和加快训练速度。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址 YOLOv5改进+入门——持续更新各种有效涨点方法 点击即可跳转 

目录

1. 原理

2. 将C3_REPVGGOREPA添加到yolov5网络中

2.1 C3_REPVGGOREPA代码实现

2.2 C3_REPVGGOREPA的神经网络模块代码解析

2.3 新增yaml文件

2.4 注册模块

2.5 执行程序

3. 完整代码分享  

4. GFLOPs

5. 进阶

6. 总结


1. 原理

论文地址:Online Convolutional Re-parameterization——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

REPVGG和OREPA的主要原理可以概括为结构重参数化的应用与优化。以下是两者的主要原理解释:

1. REPVGG的原理

REPVGG是一种基于VGG的卷积神经网络,应用了结构重参数化(Structural Re-parameterization)的概念。具体来说,它在训练阶段使用复杂的多分支结构以提升模型的表现力,而在推理阶段,将这些复杂的结构整合为一个简单的VGG-like卷积块,从而在保持高精度的同时提高了推理效率。这种方法在训练阶段引入了更多的计算成本,但通过在推理阶段将这些成本“折叠”成一个简单的结构,从而在推理时保持较高的效率。

2. OREPA的原理

OREPA(Online Convolutional Re-parameterization)是对传统结构重参数化方法的改进。它主要通过以下方式优化了训练效率:

  • 在线重参数化(Online Re-parameterization):OREPA在训练过程中简化了复杂的训练结构,通过去除非线性层(如Batch Normalization),引入线性缩放层来替代,从而在保持多分支优化方向的多样性的同时,实现了在线的结构简化。

  • 块压缩(Block Squeezing):在OREPA中,经过线性化后的块可以在训练过程中被压缩为单个卷积核,从而显著减少训练时的计算和存储开销。这使得OREPA在保持高精度的同时,能够显著提高训练效率并降低显存占用。

主要区别

  • 结构设计:REPVGG的多分支结构在训练阶段引入了更高的计算复杂度,而OREPA通过去除非线性层并引入线性缩放层,使得其训练时的计算开销大大降低。

  • 训练成本:REPVGG的训练成本较高,而OREPA通过在线重参数化和块压缩,显著降低了训练成本。

总结来说,OREPA通过优化结构重参数化过程中的训练效率,保留了高效的推理能力,并能够在各种计算机视觉任务中提供一致的性能提升。

2. 将C3_REPVGGOREPA添加到yolov5网络中

2.1 C3_REPVGGOREPA代码实现

关键步骤一将下面的代码粘贴到\yolov5\models\common.py中


import torch, math
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import numpy as np

class SEAttention(nn.Module):
    def __init__(self, channel=512,reduction=16):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )
 
    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)
 
    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)

def transI_fusebn(kernel, bn):
    gamma = bn.weight
    std = (bn.running_var + bn.eps).sqrt()
    return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std

def transVI_multiscale(kernel, target_kernel_size):
    H_pixels_to_pad = (target_kernel_size - kernel.size(2)) // 2
    W_pixels_to_pad = (target_kernel_size - kernel.size(3)) // 2
    return F.pad(kernel, [W_pixels_to_pad, W_pixels_to_pad, H_pixels_to_pad, H_pixels_to_pad])

class OREPA(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 padding=None,
                 groups=1,
                 dilation=1,
                 act=True,
                 internal_channels_1x1_3x3=None,
                 deploy=False,
                 single_init=False, 
                 weight_only=False,
                 init_hyper_para=1.0, init_hyper_gamma=1.0):
        super(OREPA, self).__init__()
        self.deploy = deploy

        self.nonlinear = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
        self.weight_only = weight_only
        
        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.groups = groups

        self.stride = stride
        padding = autopad(kernel_size, padding, dilation)
        self.padding = padding
        self.dilation = dilation

        if deploy:
            self.orepa_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                                      padding=padding, dilation=dilation, groups=groups, bias=True)

        else:

            self.branch_counter = 0

            self.weight_orepa_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels / self.groups), kernel_size, kernel_size))
            init.kaiming_uniform_(self.weight_orepa_origin, a=math.sqrt(0.0))
            self.branch_counter += 1

            self.weight_orepa_avg_conv = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels / self.groups), 1,
                            1))
            self.weight_orepa_pfir_conv = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels / self.groups), 1,
                            1))
            init.kaiming_uniform_(self.weight_orepa_avg_conv, a=0.0)
            init.kaiming_uniform_(self.weight_orepa_pfir_conv, a=0.0)
            self.register_buffer(
                'weight_orepa_avg_avg',
                torch.ones(kernel_size,
                        kernel_size).mul(1.0 / kernel_size / kernel_size))
            self.branch_counter += 1
            self.branch_counter += 1

            self.weight_orepa_1x1 = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels / self.groups), 1,
                            1))
            init.kaiming_uniform_(self.weight_orepa_1x1, a=0.0)
            self.branch_counter += 1

            if internal_channels_1x1_3x3 is None:
                internal_channels_1x1_3x3 = in_channels if groups <= 4 else 2 * in_channels

            if internal_channels_1x1_3x3 == in_channels:
                self.weight_orepa_1x1_kxk_idconv1 = nn.Parameter(
                    torch.zeros(in_channels, int(in_channels / self.groups), 1, 1))
                id_value = np.zeros(
                    (in_channels, int(in_channels / self.groups), 1, 1))
                for i in range(in_channels):
                    id_value[i, i % int(in_channels / self.groups), 0, 0] = 1
                id_tensor = torch.from_numpy(id_value).type_as(
                    self.weight_orepa_1x1_kxk_idconv1)
                self.register_buffer('id_tensor', id_tensor)

            else:
                self.weight_orepa_1x1_kxk_idconv1 = nn.Parameter(
                    torch.zeros(internal_channels_1x1_3x3,
                                int(in_channels / self.groups), 1, 1))
                id_value = np.zeros(
                    (internal_channels_1x1_3x3, int(in_channels / self.groups), 1, 1))
                for i in range(internal_channels_1x1_3x3):
                    id_value[i, i % int(in_channels / self.groups), 0, 0] = 1
                id_tensor = torch.from_numpy(id_value).type_as(
                    self.weight_orepa_1x1_kxk_idconv1)
                self.register_buffer('id_tensor', id_tensor)
                #init.kaiming_uniform_(
                    #self.weight_orepa_1x1_kxk_conv1, a=math.sqrt(0.0))
            self.weight_orepa_1x1_kxk_conv2 = nn.Parameter(
                torch.Tensor(out_channels,
                            int(internal_channels_1x1_3x3 / self.groups),
                            kernel_size, kernel_size))
            init.kaiming_uniform_(self.weight_orepa_1x1_kxk_conv2, a=math.sqrt(0.0))
            self.branch_counter += 1

            expand_ratio = 8
            self.weight_orepa_gconv_dw = nn.Parameter(
                torch.Tensor(in_channels * expand_ratio, 1, kernel_size,
                            kernel_size))
            self.weight_orepa_gconv_pw = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels * expand_ratio / self.groups), 1, 1))
            init.kaiming_uniform_(self.weight_orepa_gconv_dw, a=math.sqrt(0.0))
            init.kaiming_uniform_(self.weight_orepa_gconv_pw, a=math.sqrt(0.0))
            self.branch_counter += 1

            self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
            if weight_only is False:
                self.bn = nn.BatchNorm2d(self.out_channels)

            self.fre_init()

            init.constant_(self.vector[0, :], 0.25 * math.sqrt(init_hyper_gamma))  #origin
            init.constant_(self.vector[1, :], 0.25 * math.sqrt(init_hyper_gamma))  #avg
            init.constant_(self.vector[2, :], 0.0 * math.sqrt(init_hyper_gamma))  #prior
            init.constant_(self.vector[3, :], 0.5 * math.sqrt(init_hyper_gamma))  #1x1_kxk
            init.constant_(self.vector[4, :], 1.0 * math.sqrt(init_hyper_gamma))  #1x1
            init.constant_(self.vector[5, :], 0.5 * math.sqrt(init_hyper_gamma))  #dws_conv

            self.weight_orepa_1x1.data = self.weight_orepa_1x1.mul(init_hyper_para)
            self.weight_orepa_origin.data = self.weight_orepa_origin.mul(init_hyper_para)
            self.weight_orepa_1x1_kxk_conv2.data = self.weight_orepa_1x1_kxk_conv2.mul(init_hyper_para)
            self.weight_orepa_avg_conv.data = self.weight_orepa_avg_conv.mul(init_hyper_para)
            self.weight_orepa_pfir_conv.data = self.weight_orepa_pfir_conv.mul(init_hyper_para)

            self.weight_orepa_gconv_dw.data = self.weight_orepa_gconv_dw.mul(math.sqrt(init_hyper_para))
            self.weight_orepa_gconv_pw.data = self.weight_orepa_gconv_pw.mul(math.sqrt(init_hyper_para))

            if single_init:
                #   Initialize the vector.weight of origin as 1 and others as 0. This is not the default setting.
                self.single_init()  

    def fre_init(self):
        prior_tensor = torch.Tensor(self.out_channels, self.kernel_size,
                                    self.kernel_size)
        half_fg = self.out_channels / 2
        for i in range(self.out_channels):
            for h in range(3):
                for w in range(3):
                    if i < half_fg:
                        prior_tensor[i, h, w] = math.cos(math.pi * (h + 0.5) *
                                                         (i + 1) / 3)
                    else:
                        prior_tensor[i, h, w] = math.cos(math.pi * (w + 0.5) *
                                                         (i + 1 - half_fg) / 3)

        self.register_buffer('weight_orepa_prior', prior_tensor)

    def weight_gen(self):
        weight_orepa_origin = torch.einsum('oihw,o->oihw',
                                          self.weight_orepa_origin,
                                          self.vector[0, :])

        weight_orepa_avg = torch.einsum('oihw,hw->oihw', self.weight_orepa_avg_conv, self.weight_orepa_avg_avg)
        weight_orepa_avg = torch.einsum(
             'oihw,o->oihw',
             torch.einsum('oi,hw->oihw', self.weight_orepa_avg_conv.squeeze(3).squeeze(2),
                          self.weight_orepa_avg_avg), self.vector[1, :])


        weight_orepa_pfir = torch.einsum(
            'oihw,o->oihw',
            torch.einsum('oi,ohw->oihw', self.weight_orepa_pfir_conv.squeeze(3).squeeze(2),
                          self.weight_orepa_prior), self.vector[2, :])

        weight_orepa_1x1_kxk_conv1 = None
        if hasattr(self, 'weight_orepa_1x1_kxk_idconv1'):
            weight_orepa_1x1_kxk_conv1 = (self.weight_orepa_1x1_kxk_idconv1 +
                                        self.id_tensor).squeeze(3).squeeze(2)
        elif hasattr(self, 'weight_orepa_1x1_kxk_conv1'):
            weight_orepa_1x1_kxk_conv1 = self.weight_orepa_1x1_kxk_conv1.squeeze(3).squeeze(2)
        else:
            raise NotImplementedError
        weight_orepa_1x1_kxk_conv2 = self.weight_orepa_1x1_kxk_conv2

        if self.groups > 1:
            g = self.groups
            t, ig = weight_orepa_1x1_kxk_conv1.size()
            o, tg, h, w = weight_orepa_1x1_kxk_conv2.size()
            weight_orepa_1x1_kxk_conv1 = weight_orepa_1x1_kxk_conv1.view(
                g, int(t / g), ig)
            weight_orepa_1x1_kxk_conv2 = weight_orepa_1x1_kxk_conv2.view(
                g, int(o / g), tg, h, w)
            weight_orepa_1x1_kxk = torch.einsum('gti,gothw->goihw',
                                              weight_orepa_1x1_kxk_conv1,
                                              weight_orepa_1x1_kxk_conv2).reshape(
                                                  o, ig, h, w)
        else:
            weight_orepa_1x1_kxk = torch.einsum('ti,othw->oihw',
                                              weight_orepa_1x1_kxk_conv1,
                                              weight_orepa_1x1_kxk_conv2)
        weight_orepa_1x1_kxk = torch.einsum('oihw,o->oihw', weight_orepa_1x1_kxk, self.vector[3, :])

        weight_orepa_1x1 = 0
        if hasattr(self, 'weight_orepa_1x1'):
            weight_orepa_1x1 = transVI_multiscale(self.weight_orepa_1x1,
                                                self.kernel_size)
            weight_orepa_1x1 = torch.einsum('oihw,o->oihw', weight_orepa_1x1,
                                           self.vector[4, :])

        weight_orepa_gconv = self.dwsc2full(self.weight_orepa_gconv_dw,
                                          self.weight_orepa_gconv_pw,
                                          self.in_channels, self.groups)
        weight_orepa_gconv = torch.einsum('oihw,o->oihw', weight_orepa_gconv,
                                        self.vector[5, :])

        weight = weight_orepa_origin + weight_orepa_avg + weight_orepa_1x1 + weight_orepa_1x1_kxk + weight_orepa_pfir + weight_orepa_gconv

        return weight

    def dwsc2full(self, weight_dw, weight_pw, groups, groups_conv=1):

        t, ig, h, w = weight_dw.size()
        o, _, _, _ = weight_pw.size()
        tg = int(t / groups)
        i = int(ig * groups)
        ogc = int(o / groups_conv)
        groups_gc = int(groups / groups_conv)
        weight_dw = weight_dw.view(groups_conv, groups_gc, tg, ig, h, w)
        weight_pw = weight_pw.squeeze().view(ogc, groups_conv, groups_gc, tg)

        weight_dsc = torch.einsum('cgtihw,ocgt->cogihw', weight_dw, weight_pw)
        return weight_dsc.reshape(o, int(i/groups_conv), h, w)

    def forward(self, inputs=None):
        if hasattr(self, 'orepa_reparam'):
            return self.nonlinear(self.orepa_reparam(inputs))
        
        weight = self.weight_gen()

        if self.weight_only is True:
            return weight

        out = F.conv2d(
            inputs,
            weight,
            bias=None,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            groups=self.groups)
        return self.nonlinear(self.bn(out))

    def get_equivalent_kernel_bias(self):
        return transI_fusebn(self.weight_gen(), self.bn)

    def switch_to_deploy(self):
        if hasattr(self, 'or1x1_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.orepa_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels,
                                     kernel_size=self.kernel_size, stride=self.stride,
                                     padding=self.padding, dilation=self.dilation, groups=self.groups, bias=True)
        self.orepa_reparam.weight.data = kernel
        self.orepa_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('weight_orepa_origin')
        self.__delattr__('weight_orepa_1x1')
        self.__delattr__('weight_orepa_1x1_kxk_conv2')
        if hasattr(self, 'weight_orepa_1x1_kxk_idconv1'):
            self.__delattr__('id_tensor')
            self.__delattr__('weight_orepa_1x1_kxk_idconv1')
        elif hasattr(self, 'weight_orepa_1x1_kxk_conv1'):
            self.__delattr__('weight_orepa_1x1_kxk_conv1')
        else:
            raise NotImplementedError
        self.__delattr__('weight_orepa_avg_avg')  
        self.__delattr__('weight_orepa_avg_conv')
        self.__delattr__('weight_orepa_pfir_conv')
        self.__delattr__('weight_orepa_prior')
        self.__delattr__('weight_orepa_gconv_dw')
        self.__delattr__('weight_orepa_gconv_pw')

        self.__delattr__('bn')
        self.__delattr__('vector')

    def init_gamma(self, gamma_value):
        init.constant_(self.vector, gamma_value)

    def single_init(self):
        self.init_gamma(0.0)
        init.constant_(self.vector[0, :], 1.0)


class OREPA_LargeConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1,
                 stride=1, padding=None, groups=1, dilation=1, act=True, deploy=False):
        super(OREPA_LargeConv, self).__init__()
        assert kernel_size % 2 == 1 and kernel_size > 3
        
        padding = autopad(kernel_size, padding, dilation)
        self.stride = stride
        self.padding = padding
        self.layers = int((kernel_size - 1) / 2)
        self.groups = groups
        self.dilation = dilation

        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels

        internal_channels = out_channels
        self.nonlinear = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        if deploy:
            self.or_large_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                                      padding=padding, dilation=dilation, groups=groups, bias=True)

        else:
            for i in range(self.layers):
                if i == 0:
                    self.__setattr__('weight'+str(i), OREPA(in_channels, internal_channels, kernel_size=3, stride=1, padding=1, groups=groups, weight_only=True))
                elif i == self.layers - 1:
                    self.__setattr__('weight'+str(i), OREPA(internal_channels, out_channels, kernel_size=3, stride=self.stride, padding=1, weight_only=True))
                else:
                    self.__setattr__('weight'+str(i), OREPA(internal_channels, internal_channels, kernel_size=3, stride=1, padding=1, weight_only=True))

            self.bn = nn.BatchNorm2d(out_channels)
            #self.unfold = torch.nn.Unfold(kernel_size=3, dilation=1, padding=2, stride=1)

    def weight_gen(self):
        weight = getattr(self, 'weight'+str(0)).weight_gen().transpose(0, 1)
        for i in range(self.layers - 1):
            weight2 = getattr(self, 'weight'+str(i+1)).weight_gen()
            weight = F.conv2d(weight, weight2, groups=self.groups, padding=2)
        
        return weight.transpose(0, 1)
        '''
        weight = getattr(self, 'weight'+str(0))(inputs=None).transpose(0, 1)
        for i in range(self.layers - 1):
            weight = self.unfold(weight)
            weight2 = getattr(self, 'weight'+str(i+1))(inputs=None)

            weight = torch.einsum('akl,bk->abl', weight, weight2.view(weight2.size(0), -1))
            k = i * 2 + 5
            weight = weight.view(weight.size(0), weight.size(1), k, k)
        
        return weight.transpose(0, 1)
        '''

    def forward(self, inputs):
        if hasattr(self, 'or_large_reparam'):
            return self.nonlinear(self.or_large_reparam(inputs))

        weight = self.weight_gen()
        out = F.conv2d(inputs, weight, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
        return self.nonlinear(self.bn(out))

    def get_equivalent_kernel_bias(self):
        return transI_fusebn(self.weight_gen(), self.bn)

    def switch_to_deploy(self):
        if hasattr(self, 'or_large_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.or_large_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels,
                                     kernel_size=self.kernel_size, stride=self.stride,
                                     padding=self.padding, dilation=self.dilation, groups=self.groups, bias=True)
        self.or_large_reparam.weight.data = kernel
        self.or_large_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        for i in range(self.layers):
            self.__delattr__('weight'+str(i))
        self.__delattr__('bn')

class ConvBN(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                             stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
        super().__init__()
        if nonlinear is None:
            self.nonlinear = nn.Identity()
        else:
            self.nonlinear = nonlinear
        if deploy:
            self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                      stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
        else:
            self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                            stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
            self.bn = nn.BatchNorm2d(num_features=out_channels)

    def forward(self, x):
        if hasattr(self, 'bn'):
            return self.nonlinear(self.bn(self.conv(x)))
        else:
            return self.nonlinear(self.conv(x))

    def switch_to_deploy(self):
        kernel, bias = transI_fusebn(self.conv.weight, self.bn)
        conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
                                      stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
        conv.weight.data = kernel
        conv.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('conv')
        self.__delattr__('bn')
        self.conv = conv

class OREPA_3x3_RepVGG(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=None, groups=1, dilation=1, act=True,
                 internal_channels_1x1_3x3=None,
                 deploy=False):
        super(OREPA_3x3_RepVGG, self).__init__()
        self.deploy = deploy

        self.nonlinear = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.groups = groups
        padding = autopad(kernel_size, padding, dilation)
        assert padding == kernel_size // 2

        self.stride = stride
        self.padding = padding
        self.dilation = dilation

        self.branch_counter = 0

        self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
        init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
        self.branch_counter += 1


        if groups < out_channels:
            self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
            self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
            init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
            init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
            self.weight_rbr_avg_conv.data
            self.weight_rbr_pfir_conv.data
            self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
            self.branch_counter += 1

        else:
            raise NotImplementedError
        self.branch_counter += 1

        if internal_channels_1x1_3x3 is None:
            internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels   # For mobilenet, it is better to have 2X internal channels

        if internal_channels_1x1_3x3 == in_channels:
            self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
            id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
            for i in range(in_channels):
                id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
            id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
            self.register_buffer('id_tensor', id_tensor)

        else:
            self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
            init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
        self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
        init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
        self.branch_counter += 1

        expand_ratio = 8
        self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
        self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
        init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
        init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
        self.branch_counter += 1

        if out_channels == in_channels and stride == 1:
            self.branch_counter += 1

        self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
        self.bn = nn.BatchNorm2d(out_channels)

        self.fre_init()

        init.constant_(self.vector[0, :], 0.25)    #origin
        init.constant_(self.vector[1, :], 0.25)      #avg
        init.constant_(self.vector[2, :], 0.0)      #prior
        init.constant_(self.vector[3, :], 0.5)    #1x1_kxk
        init.constant_(self.vector[4, :], 0.5)     #dws_conv


    def fre_init(self):
        prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
        half_fg = self.out_channels/2
        for i in range(self.out_channels):
            for h in range(3):
                for w in range(3):
                    if i < half_fg:
                        prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
                    else:
                        prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)

        self.register_buffer('weight_rbr_prior', prior_tensor)

    def weight_gen(self):

        weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])

        weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
        
        weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])

        weight_rbr_1x1_kxk_conv1 = None
        if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
            weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
        elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
            weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
        else:
            raise NotImplementedError
        weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2

        if self.groups > 1:
            g = self.groups
            t, ig = weight_rbr_1x1_kxk_conv1.size()
            o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
            weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
            weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
            weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
        else:
            weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)

        weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])

        weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
        weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])    

        weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv

        return weight

    def dwsc2full(self, weight_dw, weight_pw, groups):
        
        t, ig, h, w = weight_dw.size()
        o, _, _, _ = weight_pw.size()
        tg = int(t/groups)
        i = int(ig*groups)
        weight_dw = weight_dw.view(groups, tg, ig, h, w)
        weight_pw = weight_pw.squeeze().view(o, groups, tg)
        
        weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
        return weight_dsc.view(o, i, h, w)

    def forward(self, inputs):
        weight = self.weight_gen()
        out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)

        return self.nonlinear(self.bn(out))

class RepVGGBlock_OREPA(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=None, groups=1, dilation=1, act=True, deploy=False, use_se=False):
        super(RepVGGBlock_OREPA, self).__init__()
        self.deploy = deploy
        self.groups = groups
        self.in_channels = in_channels
        self.out_channels = out_channels

        padding = autopad(kernel_size, padding, dilation)
        self.padding = padding
        self.dilation = dilation
        self.groups = groups

        assert kernel_size == 3
        assert padding == 1

        self.nonlinearity = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        if use_se:
            self.se = SEAttention(out_channels, reduction=out_channels // 16)
        else:
            self.se = nn.Identity()

        if deploy:
            self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                                      padding=padding, dilation=dilation, groups=groups, bias=True)

        else:
            self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None
            self.rbr_dense = OREPA_3x3_RepVGG(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=1)
            self.rbr_1x1 = ConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, groups=groups, dilation=1)

    def forward(self, inputs):
        if hasattr(self, 'rbr_reparam'):
            return self.nonlinearity(self.se(self.rbr_reparam(inputs)))

        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)

        out1 = self.rbr_dense(inputs)
        out2 = self.rbr_1x1(inputs)
        out3 = id_out
        out = out1 + out2 + out3

        return self.nonlinearity(self.se(out))


    #   Optional. This improves the accuracy and facilitates quantization.
    #   1.  Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
    #   2.  Use like this.
    #       loss = criterion(....)
    #       for every RepVGGBlock blk:
    #           loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
    #       optimizer.zero_grad()
    #       loss.backward()

    # Not used for OREPA
    def get_custom_L2(self):
        K3 = self.rbr_dense.weight_gen()
        K1 = self.rbr_1x1.conv.weight
        t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
        t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()

        l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum()      # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
        eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1                           # The equivalent resultant central point of 3x3 kernel.
        l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum()        # Normalize for an L2 coefficient comparable to regular L2.
        return l2_loss_eq_kernel + l2_loss_circle

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1,1,1,1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if not isinstance(branch, nn.BatchNorm2d):
            if isinstance(branch, OREPA_3x3_RepVGG):
                kernel = branch.weight_gen()
            elif isinstance(branch, ConvBN):
                kernel = branch.conv.weight
            else:
                raise NotImplementedError
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def switch_to_deploy(self):
        if hasattr(self, 'rbr_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
                                     kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
                                     padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
        self.rbr_reparam.weight.data = kernel
        self.rbr_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('rbr_dense')
        self.__delattr__('rbr_1x1')
        if hasattr(self, 'rbr_identity'):
            self.__delattr__('rbr_identity')

class Bottleneck_REPVGGOREPA(Bottleneck):
    """Standard bottleneck with DCNV2."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):  # ch_in, ch_out, shortcut, groups, kernels, expand
        super().__init__(c1, c2, shortcut, g, k, e)
        c_ = int(c2 * e)  # hidden channels
        if k[0] == 1:
            self.cv1 = Conv(c1, c_, 1)
        else:
            self.cv1 = RepVGGBlock_OREPA(c1, c_, 3)
        
        self.cv2 = RepVGGBlock_OREPA(c_, c2, 3, groups=g)

class C3_REPVGGOREPA(C3):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(Bottleneck_REPVGGOREPA(c_, c_, shortcut, g, k=(1, 3), e=1.0) for _ in range(n)))

2.2 C3_REPVGGOREPA的神经网络模块代码解析

C3_REPVGGOREPA 它继承自另一个类 C2f。以下是对该代码的详细解析:

1. 类的定义与继承

class C3_REPVGGOREPA(C3):
  • C3_REPVGGOREPA 继承自 C3 类,这意味着 C3_REPVGGOREPA 将拥有 C3 的所有属性和方法,但可以重写或扩展这些属性和方法。

  • C3 是父类,它可能定义了一些基础的神经网络结构或功能。

2. 初始化方法

def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
    super().__init__(c1, c2, n, shortcut, g, e)
  • __init__ 是初始化方法,当创建 C3_REPVGGOREPA 类的实例时会自动调用。

  • c1c2 表示输入和输出的通道数,n 表示模块重复的次数,shortcut 是是否使用残差连接的标志,g 是组卷积的组数,e 可能表示扩展因子。

  • super().__init__(c1, c2, n, shortcut, g, e) 调用了父类 C3 的初始化方法,确保 C3_REPVGGOREPA 继承父类的初始化逻辑。

3. 模块列表

self.m = nn.ModuleList(Bottleneck_REPVGGOREPA(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))
  • self.m 是一个 nn.ModuleList,用于存储一系列神经网络层或模块。

  • Bottleneck_REPVGGOREPA 是一个自定义的模块(实现了REPVGG和OREPA方法的瓶颈层),每个模块的输入和输出通道数都是 self.cshortcutgk=(3, 3) 是这个模块的参数,其中 k=(3, 3) 可能表示使用的卷积核大小为 3x3,e=1.0 表示扩展因子。

  • for _ in range(n) 表示创建 nBottleneck_REPVGGOREPA 模块并将它们添加到 self.m 中,n 是初始化方法中的参数。

4. 总结

C3_REPVGGOREPA 类是一个自定义神经网络模块,继承自 C3。在这个类中,它使用了 Bottleneck_REPVGGOREPA 模块,并通过 nn.ModuleList 将多个这样的模块组合在一起。这种设计允许通过重复使用 Bottleneck_REPVGGOREPA 模块来构建更深的神经网络结构,同时继承并扩展了 C3 类的功能。

2.3 新增yaml文件

关键步骤二在下/yolov5/models下新建文件 yolov5_C3_REPVGGOREPA.yaml并将下面代码复制进去

  • 目标检测yaml文件 
# Ultralytics YOLOv5 🚀, AGPL-3.0 license

# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
  - [10, 13, 16, 30, 33, 23] # P3/8
  - [30, 61, 62, 45, 59, 119] # P4/16
  - [116, 90, 156, 198, 373, 326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [
    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
    [-1, 3, C3_REPVGGOREPA, [128]],
    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
    [-1, 6, C3_REPVGGOREPA, [256]],
    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
    [-1, 9, C3_REPVGGOREPA, [512]],
    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
    [-1, 3, C3_REPVGGOREPA, [1024]],
    [-1, 1, SPPF, [1024, 5]], # 9
  ]

# YOLOv5 v6.0 head
head: [
    [-1, 1, Conv, [512, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 6], 1, Concat, [1]], # cat backbone P4
    [-1, 3, C3, [512, False]], # 13

    [-1, 1, Conv, [256, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 4], 1, Concat, [1]], # cat backbone P3
    [-1, 3, C3, [256, False]], # 17 (P3/8-small)

    [-1, 1, Conv, [256, 3, 2]],
    [[-1, 14], 1, Concat, [1]], # cat head P4
    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

    [-1, 1, Conv, [512, 3, 2]],
    [[-1, 10], 1, Concat, [1]], # cat head P5
    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

    [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
  ]
  • 语义分割yaml文件
# Ultralytics YOLOv5 🚀, AGPL-3.0 license

# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
  - [10, 13, 16, 30, 33, 23] # P3/8
  - [30, 61, 62, 45, 59, 119] # P4/16
  - [116, 90, 156, 198, 373, 326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [
    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
    [-1, 3, C3_REPVGGOREPA, [128]],
    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
    [-1, 6, C3_REPVGGOREPA, [256]],
    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
    [-1, 9, C3_REPVGGOREPA, [512]],
    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
    [-1, 3, C3_REPVGGOREPA, [1024]],
    [-1, 1, SPPF, [1024, 5]], # 9
  ]

# YOLOv5 v6.0 head
head: [
    [-1, 1, Conv, [512, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 6], 1, Concat, [1]], # cat backbone P4
    [-1, 3, C3, [512, False]], # 13

    [-1, 1, Conv, [256, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 4], 1, Concat, [1]], # cat backbone P3
    [-1, 3, C3, [256, False]], # 17 (P3/8-small)

    [-1, 1, Conv, [256, 3, 2]],
    [[-1, 14], 1, Concat, [1]], # cat head P4
    [-1, 3, C3, [512, False]], # 20 (P4/16-medium)

    [-1, 1, Conv, [512, 3, 2]],
    [[-1, 10], 1, Concat, [1]], # cat head P5
    [-1, 3, C3, [1024, False]], # 23 (P5/32-large)

    [[17, 20, 23], 1, Segment, [nc, anchors, 32, 256]], # Segment (P3, P4, P5)
  ]

2.4 注册模块

关键步骤三在yolo.py的parse_model函数替换添加C3_REPVGGOREPA

2.5 执行程序

在train.py中,将cfg的参数路径设置为yolov5_C3_REPVGGOREPA.yaml的路径

建议大家写绝对路径,确保一定能找到

 🚀运行程序,如果出现下面的内容则说明添加成功🚀    

                 from  n    params  module                                  arguments
  0                -1  1      7040  models.common.Conv                      [3, 64, 6, 2, 2]
  1                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
  2                -1  3    802816  models.common.C3_REPVGGOREPA            [128, 128, 3]
  3                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]
  4                -1  6   6159360  models.common.C3_REPVGGOREPA            [256, 256, 6]
  5                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]
  6                -1  9  36302848  models.common.C3_REPVGGOREPA            [512, 512, 9]
  7                -1  1   4720640  models.common.Conv                      [512, 1024, 3, 2]
  8                -1  3  49545216  models.common.C3_REPVGGOREPA            [1024, 1024, 3]
  9                -1  1   2624512  models.common.SPPF                      [1024, 1024, 5]
 10                -1  1    525312  models.common.Conv                      [1024, 512, 1, 1]
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 12           [-1, 6]  1         0  models.common.Concat                    [1]
 13                -1  3   2757632  models.common.C3                        [1024, 512, 3, False]
 14                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 16           [-1, 4]  1         0  models.common.Concat                    [1]
 17                -1  3    690688  models.common.C3                        [512, 256, 3, False]
 18                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
 19          [-1, 14]  1         0  models.common.Concat                    [1]
 20                -1  3   2495488  models.common.C3                        [512, 512, 3, False]
 21                -1  1   2360320  models.common.Conv                      [512, 512, 3, 2]
 22          [-1, 10]  1         0  models.common.Concat                    [1]
 23                -1  3   9971712  models.common.C3                        [1024, 1024, 3, False]
 24      [17, 20, 23]  1    457725  Detect                                  [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 512, 1024]]
YOLOv5_C3_REPVGGOREPA summary: 620 layers, 121693309 parameters, 121693309 gradients, 74.8 GFLOPs

3. 完整代码分享  

https://pan.baidu.com/s/1zSOMTwR6U9tU0d-_ciMv6A?pwd=pftx

提取码: pftx 

4. GFLOPs

关于GFLOPs的计算方式可以查看:百面算法工程师 | 卷积基础知识——Convolution

未改进的GFLOPs

img

改进后的GFLOPs

手里的没有卡了,需要的同学自己测一下吧

5. 进阶

可以结合损失函数或者卷积模块进行多重改进

YOLOv5改进 | 损失函数 | EIoU、SIoU、WIoU、DIoU、FocuSIoU等多种损失函数——点击即可跳转

6. 总结

OREPA的主要原理在于通过在线卷积重参数化(Online Convolutional Re-parameterization)优化了传统结构重参数化方法的训练效率。在训练阶段,OREPA首先移除了复杂训练块中的非线性标准化层,替换为线性缩放层,从而保持了各分支优化方向的多样性,同时简化了结构。然后,OREPA将这些线性化的块在训练过程中进一步压缩为单个卷积核,从而显著降低了计算和存储开销。这一过程不仅大幅度减少了训练成本,还保留了模型的高表现力,使得在推理阶段能够实现高效且精准的模型部署。这种方法特别适用于需要在有限计算资源下执行的场景,如实时推理任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2106754.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数字与文字组合商标,有一个元素近似整体驳回!

经常遇到有网友问驳回复审要不要做复审&#xff0c;其实判断分析好&#xff0c;大多数商标驳回后不值得做复审&#xff0c;也可以省掉不必要的费用&#xff0c;最近有个网友联系到普推知产商标老杨&#xff0c;咨询一个驳回复审的问题。 这个网友的商标是数字和文字组合&#…

若依系统的学习

若依环境 介绍 ‌若依是一款快速开发平台(低代码)&#xff0c;用于快速构建企业级后台管理系统&#xff0c;它提供了许多常用的功能模块和组件&#xff0c;包括权限管理、代码生成、工作流、消息中心等 官方地址: https://www.ruoyi.vip/ ‌基于Spring Boot和Spring Cloud‌…

【分享】Excel表格设置“打开密码”的两种方法

在工作中&#xff0c;Excel文件通常包含敏感数据&#xff0c;出于安全性考虑&#xff0c;给文件设置打开密码是非常有效的方式。接下来&#xff0c;小编给大家介绍两种方法&#xff0c;帮助你轻松为Excel文件设置密码。 方法一&#xff1a;在Excel表里设置“打开密码” 这是Ex…

2024AEI:Cross-Supervised multisource prototypical network

目录 研究动机 研究数据集 研究方法 研究动机 该论文是为了解决以轴承故障诊断为背景的多源域小样本域自适应问题而提出的。文中有提及到实际的工业生产中&#xff0c;存在多源域缺少足够的样本标签数据支撑一般的多源域域自适应&#xff08;MSDA&#xff09;方法的情况&…

借助el-steps和el-form实现超长规则配置的功能

目录 一、应用场景 二、开发流程 三、详细开发流程 四、总结 一、应用场景 最近开发了一个规则类的配置功能&#xff0c;这个功能之前就写过&#xff0c;最近完善了一下&#xff0c;所以将原先的规则变得更多元化&#xff0c;结构也更多了一层&#xff0c;添加新功能的时候…

Java箱与泛型

大O的渐进表示法 大 O 的渐进表示法 去掉了那些对结果影响不大的项 &#xff0c;简洁明了的表示出了执行次数。 void func1(int N){ int count 0; for (int i 0; i < N ; i) { for (int j 0; j < N ; j) { count; } } for (int k 0; k < 2 * N ; k) { count; } in…

深度学习示例2-多输入多输出的神经网络模型

一、代码示例 from tensorflow import keras from tensorflow.keras import layers import numpy as np# 定义 多输入 多输出的模型 vocabulary_size = 1000 num_tags = 100 num_departments = 4title = keras.Input(shape=(vocabulary_size,), name = "title") tex…

【虚拟化】KVM常用命令操作(virsh磁盘管理)

目录 一、KVM概述 1.1 KVM工具栈 1.2 libvirt架构概述 1.3 KVM磁盘格式介绍 1.4 KVM磁盘操作常见语法 1.5 qemu-img命令简介 1.6 libguestfs安装 二、虚拟机磁盘管理 2.1 查看虚拟机磁盘 2.2 创建虚拟机磁盘 2.3 扩容磁盘容量 2.4 查看虚拟机存储状态 2.5 快照 2…

基于BiLSTM-CRF的医学命名实体识别研究(下)模型构建

一.生成映射字典 接下来需要将每个汉字、边界、拼音、偏旁部首等映射成向量。所以&#xff0c;我们首先需要来构造字典&#xff0c;统计多少个不同的字、边界、拼音、偏旁部首等&#xff0c;然后再构建模型将不同的汉字、拼音等映射成不同的向量。 在prepare_data.py中自定义…

实现自定义的移动端双指缩放

原理&#xff1a; DOM上绑定双指触控相关的事件&#xff0c;当双指触控时&#xff0c;保存初始距离&#xff0c;当双指移动时&#xff0c;计算两触控点的距离&#xff0c;根据移动中的距离与初始距离调节缩放比例&#xff0c;再根据缩放比例改变元素样式即可实现缩放 效果演示…

Java,版本控制:算法详解与实现

Spring Boot微服务架构技术及其版本号比较优化 随着云技术和分布式系统的快速发展&#xff0c;微服务架构已经成为现代软件开发不可或缺的一部分。 Spring Boot&#xff0c;作为一款广受欢迎的Java开发框架&#xff0c;其简洁的配置和快速启动的特性深受开发者青睐。 配合Sp…

旅游线路规划和路线下载

新疆旅游&#xff0c;规划一个北疆旅游线路安排如下&#xff1a; 第一天&#xff1a;从乌鲁木齐到魔鬼城&#xff0c;晚上住宿克拉玛依市乌尔禾区&#xff1b; 第二天&#xff1a;从克拉玛依市乌尔木区到五彩滩&#xff0c;晚上住宿贾登峪&#xff1b; 第三天&#xff1a;从…

win10本地设置无密码远程桌面登录设置

win10本地设置无密码远程桌面登录

软考超详细准备之软件设计师的计算机系统题型二(上午题)

目录 流水线 存储器: cache Cache命中率的相关图形 中断 相关习题 输入和输出 相关习题 总线 相关习题 加密技术与认证技术 相关习题 加密技术 相关习题 杂题 流水线 流水线&#xff08;Pipeline&#xff09;是一种在硬件设计中用于提高效率和吞吐量的技术&…

SOMEIP_ETS_088: SD_Answer_multiple_subscribes_together

测试目的&#xff1a; 验证设备&#xff08;DUT&#xff09;是否能够接受它接收到的每个SubscribeEventgroup条目。 描述 本测试用例旨在检查DUT在接收到包含多个SubscribeEventgroup条目的消息时&#xff0c;是否能够为每个条目发送SubscribeEventgroupAck。 测试拓扑&…

Runway删库跑路,备受瞩目的Stable Diffusion v1.5不见了!

替换方案&#xff1a; Hugging Face 模型镜像 - Gitee AIGitee AI 汇聚最新最热 AI 模型&#xff0c;提供模型体验、推理、训练、部署和应用的一站式服务&#xff0c;提供充沛算力&#xff0c;做中国最好的 AI 社区。https://ai.gitee.com/hf-models

【小程序 - 大智慧】深入微信小程序的核心原理

目录 课程目标背景双线程架构WebView 结构快速渲染 PageFrame编译原理Exparser通讯系统生命周期基础库解包跨端框架预编译半编译半运行运行时框架 主流技术Tarouni-app汇总 下周安排 课程目标 本次课程主要通过后台管理小程序回顾一下小程序的高阶语法&#xff0c;然后讲解整体…

Django+Vue协同过滤算法图书推荐系统的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 需要的环境3.2 Django接口层3.3 实体类3.4 config.ini3.5 启动类3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍&#xff1a;CSDN认证博客专家&#xff0c;CSDN平台Java领域优质创作者&…

144. 腾讯云Redis数据库

文章目录 一、Redis 的主要功能特性二、Redis 的典型应用场景三、Redis 的演进过程四、Redis 的架构设计五、Redis 的数据类型及操作命令六、腾讯云数据库 Redis七、总结 Redis 是一种由 C 语言开发的 NoSQL 数据库&#xff0c;以其高性能的键值对存储和多种应用场景而闻名。本…

Vue3 实现解析markdown字段以及文件

Vue实现博客前端&#xff0c;需要实现markdown的解析&#xff0c;如果有代码则需要实现代码的高亮。 Vue的markdown解析库有很多&#xff0c;如markdown-it、vue-markdown-loader、marked、vue-markdown等。这些库都大同小异。这里选用的是marked。 一、安装依赖库 在vue项目…