Python(TensorFlow)和MATLAB及Java光学像差导图

news2024/11/13 18:51:26

🎯要点

  1. 几何光线和波前像差计算
  2. 入瞳和出瞳及近轴光学计算波前像差
  3. 特征矩阵方法计算光谱反射率、透射率和吸光度
  4. 透镜像差和绘制三阶光线像差图和横向剪切干涉图
  5. 分析瞳孔平面焦平面和大气湍流建模
  6. 神经网络光学像差计算
  7. 透镜光线传播几何偏差计算
  8. 像差和像散
  9. 色差纠正对齐定位,计算多边形统计数据
  10. 分子图像分析
  11. 神经网络多尺度算法预测
  12. 聚焦光场矢量计算
  13. 非球面反射望远镜偏差算法
    在这里插入图片描述

Python望远镜色差

完美透镜具有抛物线形状,因此它会对入射波施加二次相位,并且尺寸无限大。这种透镜将输入平面波聚焦到焦点处的单个点,或者在满足成像条件时,它可以将点物体成像为一个点:
1 u + 1 v = 1 f \frac{1}{u}+\frac{1}{v}=\frac{1}{f} u1+v1=f1
其中 u u u是镜头与物体之间的距离, v v v是镜头与图像之间的距离, f f f是镜头的焦距。根据几何光学,点源将产生点图像。然而,即使使用完美的镜头,点源也不会产生点像,而是会产生模糊盘。这个模糊盘称为点扩展函数,它表示成像系统的空间分辨率。这是由于有限的镜头光圈导致一些光束离开点源并错过镜头。因此,图像的分辨率是镜头或成像系统光圈大小的函数。如果镜头是完美的,没有任何像差,则点源的图像大小,即PSF,为:
P S F = 4 λ ν π D PSF=\frac{4 \lambda \nu}{\pi D} PSF=πD4λν
其中 D D D是镜头光圈, v v v是到图像的距离, λ \lambda λ是波长。显然,当我们增加镜头尺寸时,PSF 更小,这意味着分辨率更高。此外,靠近镜头并减少 v v v 可以提高分辨率。然而,即使透镜无限大并且来自点光源的所有光都进入透镜,由于光的波动方面,图像也不能小于波长的一半。这也可以在波长相关函数中看到。减小波长将减小 PSF 并提高分辨率。然而,为了观察这些效应,我们必须离开几何光学并考虑波动光学。

最常见的像差类型是散焦。在散焦中,图像会失焦,因为探测器没有精确地位于图像平面上。在这种情况下,点物体会产生更大的模糊盘,也就是说,我们有更大的点扩展函数,这会导致图像分辨率降低。PSF 的大小与与图像平面的距离 z 的关系为:
PSF ⁡ ( z ) = PSF ⁡ ( 0 ) 1 + ( z λ π P S F ( 0 ) 2 ) 2 \operatorname{PSF}(z)=\operatorname{PSF}(0) \sqrt{1+\left(\frac{z \lambda}{\pi P S F(0)^2}\right)^2} PSF(z)=PSF(0)1+(πPSF(0)2zλ)2
这里,当 z z z小时,PSF的大小缓慢增加,但当 z z z大时,PSF的大小随 z z z线性增加。因此,即使稍微失焦,PSF 也不会受到影响。这个范围称为瑞利范围,它决定了我们系统的焦深。如果焦深很大,我们就不需要那么精确,不同距离的不同物体仍然可以对焦。然而,当焦深较小时,只有一个物体会被聚焦,从而导致物体清晰而背景模糊的美丽图像。焦深 b b b 的计算公式为:
b = π P S F ( 0 ) 2 2 λ b=\frac{\pi P S F(0)^2}{2 \lambda} b=2λπPSF(0)2
因此,较小的光斑会导致较小的焦深。因此,当光圈较大时,我们可以获得较高的分辨率和较低的焦深。

第二种像差是探测器没有根据图像平面定向。这会导致 PSF 成为平面位置的函数。图像中心的分辨率可能很高,而沿着特定轴的分辨率会较低。如果倾斜足够大,PSF 将变成不对称椭圆。我们可以根据泽尼克多项式定义倾斜:
T x = A x cos ⁡ ( α ) T y = A y sin ⁡ ( α ) \begin{aligned} & T_x=A_x \cos (\alpha) \\ & T_y=A_y \sin (\alpha) \end{aligned} Tx=Axcos(α)Ty=Aysin(α)
因此,这种类型的像差也很容易通过沿着图像平面正确定位探测器来解决。

任何玻璃都有一定的色散,色散取决于波长。因此,折射率是波长的函数,因此透镜焦距也是波长的函数。通常,折射率与波长的关系为 1 0 − 4 10^{-4} 104,当我们使用宽带光成像或焦距较短且镜头较厚时,它开始影响成像,因此折射率的影响分散度高。为了克服望远镜中的色差,我们可以用镜子代替镜头。镜子将所有波长反射到同一方向,因此没有色差。此外,可以将两个镜头组合在一起,每个镜头由不同类型的玻璃制成,在所需的带宽下具有相反的色差,这样它们的色差就会相互抵消。

Python色差

import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
from scipy import signal
import math

定义用于拟合垂直切片的模型函数

def gauss(x, *p):
  A, mu, sigma = p
  return A*np.exp(-(x-mu)**2/(2.*sigma**2))

假设一个简单的线性校准定律

def compute_fwhm_data(filename,
                      ref_wavelength_1_x,
                      ref_wavelength_2_x,
                      ref_wavelength_1=3948,
                      ref_wavelength_2=7032,
                      wavelength1=4000,
                      wavelength2=7000,
                      bin_size=50):

  rate = (ref_wavelength_2 - ref_wavelength_1) / (ref_wavelength_2_x - ref_wavelength_1_x)
  offset = 3948 - 527 * rate

  x1 = math.floor((wavelength1 - offset) / rate)
  x2 = math.ceil((wavelength2 - offset) / rate)

  image = fits.open(filename)
  imageData = image[0].data

  cleanImageData = signal.medfilt2d(imageData, kernel_size=3)
  sliceData = cleanImageData[:, x1:x2]
  width = len(sliceData[0])
  height = len(sliceData)
  fwhmData = [0] * width

  for columnIndex in np.arange(width):
    columnValues = sliceData[:, columnIndex]
    maxIndex = np.argmax(columnValues)
    background = np.concatenate((columnValues[ : maxIndex-bin_size], columnValues[maxIndex + bin_size : ]))
    backgroundValue = np.mean(background, axis=0)
    columnValues = np.subtract(columnValues, backgroundValue)

    maxValue = columnValues[maxIndex]
    spectrum = columnValues[maxIndex - bin_size : maxIndex + bin_size]
    maxIndex = np.argmax(spectrum)

    xdata = np.arange(len(spectrum))
    p0 = [maxValue, maxIndex, 3]
    coeff, var_matrix = curve_fit(gauss, xdata, spectrum, p0=p0)
    A, mu, sigma = coeff

    fwhmData[columnIndex] = 2 * sigma 

  fwhmData_smooth = signal.savgol_filter(fwhmData, 80, 3)

  min = np.min(fwhmData_smooth)
  normalized = fwhmData_smooth / min

  return normalized
def calculate_score(fwhmData):
  return len(fwhmData) / np.sum(fwhmData)
def get_for_wavelength(fwhmData,
                            wavelength,
                            wavelength1=4000,
                            wavelength2=7100):
  step = len(fwhmData) / (wavelength2 - wavelength1)
  index = math.floor((wavelength - wavelength1) * step)
  return fwhmData[index]
rc10_fwhmData = compute_fwhm_data(
  filename="data/RC10/SSC.fits",
  ref_wavelength_1_x=414,   
  ref_wavelength_2_x=1865,  
  ref_wavelength_1 = 4047,
  ref_wavelength_2 = 6300,
)

step = (7000 - 4000) / len(rc10_fwhmData)
xdata = np.arange(4000, 7000, step)

plt.figure(figsize=(16, 8))
plt.title("Longitudinal Chromatic Aberration")
plt.plot(xdata, rc10_fwhmData, label="RC10", color='gray')
plt.xlabel("Wavelength in Å")
plt.ylabel("FWHM / FWHM min")
plt.xlim(4000, 7000)
plt.ylim(0, 5)
plt.legend();


print("score (the higher — up to 1.0 — the better):")
print(f"RC10 -> {calculate_score(rc10_fwhmData):.2f}")

👉更新:亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2106172.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【unity实战】利用Root Motion+Blend Tree+Input System+Cinemachine制作一个简单的角色控制器

文章目录 前言动画设置Blend Tree配置角色添加刚体和碰撞体代码控制人物移动那么我们接下来调整一下相机的视角效果参考完结 前言 Input System知识参考: 【推荐100个unity插件之18】Unity 新版输入系统Input System的使用,看这篇就够了 Cinemachine虚…

嵌入式全栈开发学习笔记---C++(函数/类模板)

目录 函数模板 模板机制 函数模板语法 函数模板和普通函数的区别 函数模板和普通函数调用规则 函数模板机制 排序模板函数 类模板 类模板语法 模板继承 类模板中的static关键字 模板声明 .hpp文件 类模板小结 上节学习了运算符重载,本节开始学习函数模…

使用 GZCTF 结合 GitHub 仓库搭建独立容器与动态 Flag 的 CTF 靶场+基于 Docker 的 Web 出题与部署+容器权限控制

写在前面 关于 CTF 靶场的搭建(使用 CTFd 或者 H1ve)以及 AWD 攻防平台的搭建,勇师傅在前面博客已经详细写过,可以参考我的《网站搭建》专栏,前段时间玩那个 BaseCTF,发现它的界面看着挺不错的&#xff0c…

LVGL 控件之复选框(lv_checkbox)和下拉列表(lv_dropdown)

目录 一、复选框1、组成2、设置复选框文本3、复选框部件的状态4、复选框事件5、API 函数 二、下拉列表1、组成2、选项2.1 添加选项2.2 获取当前选中的选项 3、设置3.1 设置列表展开方向3.2 设置下拉列表图标3.3 设置列表常显文本 4、事件5、API 函数 一、复选框 1、组成 复选…

Android studio 导出 release 版本的 .aar 文件

不同的android studio 版本可能会有不同的方案,我针对的是: 首先打开settings: Setting —> Experimental 界面 将选项:【configure all gradle tasks】勾上: 接着点击 File —> Sync Project with Gradle Files 然后&…

【js逆向专题】8.webpack打包

本教程仅供学习交流使用,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,请各学员自觉遵守相关法律法规。小节目标: 熟悉 webpack打包原理熟悉 webpack打包方式了解 webpack多模块打包 一. webpack打包 概念: webpack 是…

【颤抖不再怕,帕金森患者的活力锻炼秘籍!】

Hey小伙伴们~👋 今天我们来聊聊一个温暖而重要的话题——如何帮助我们的亲人或自己,在帕金森病的挑战下,依然保持生活的活力与光彩!🌈 帕金森病,这个名字听起来或许让人心生畏惧,但它绝不是生活…

地产行业如何利用Java实现精准营销

在当今竞争激烈的地产市场中,如何有效触达潜在客户并促进销售转化,成为众多房企关注的焦点。106短信平台作为一种精准的营销工具,在地产行业中发挥着越来越重要的作用。 支持免费对接试用:乐讯通PaaS平台 找好用的短信平台,选择乐…

AUTO TECH 2025 华南展 第十二届广州国际汽车零部件加工技术及汽车模具展览会——探索未来出行的创新动力

AUTO TECH 2025 华南展 第十二届广州国际汽车零部件加工技术及汽车模具展览会——探索未来出行的创新动力 随着全球汽车工业的不断进步和新能源汽车技术的迅猛发展,2025年11月20-22日在广州保利世贸博览馆将迎来一场行业瞩目的盛会——2025 第十二届广州国际汽车零部…

外接串口板,通过串口打开adb模式

一、依赖库 import subprocess import serial from serial.tools import list_ports import logging import time 二、代码 import subprocessimport serial from serial.tools import list_ports import logging import timedef openAdb(com):# com []# for i in list_por…

无人机之地面站篇

无人机的地面站,又称无人机控制站,是整个无人机系统的重要组成部分,扮演着作战指挥中心的角色。以下是对无人机地面站的详细阐述: 一、定义与功能 无人机地面站是指具有对无人机飞行平台和任务载荷进行监控和操纵能力的一组设备&…

[数据集][目标检测]翻越栏杆行为检测数据集VOC+YOLO格式512张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):512 标注数量(xml文件个数):512 标注数量(txt文件个数):512 标注类别…

通过卷积神经网络(CNN)识别和预测手写数字

一:卷积神经网络(CNN)和手写数字识别MNIST数据集的介绍 卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,它在图像和视频识别、分类和分割任务中表现出色。CNN通过模仿…

快排的深入学习

目录 交换类排序 一、冒泡排序 1. 算法介绍 2.算法流程 3. 算法性能分析 (1)时间复杂度分析 (2) 空间复杂度分析 冒泡排序的特性总结: 二、快速排序 1.算法介绍 2. 执行流程 1). hoare版本 2). 挖坑法 3)…

5.9灰度直方图

目录 实验原理 实验代码 运行结果 实验原理 calcHist 函数通常是指在计算机视觉和图像处理中用于计算图像直方图的一个函数。 cv:calcHist () 用于计算一个或多个数组的直方图。它可以处理图像数据并返回一个表示像素强度分布的向量(对于灰度图像)或…

Java:集合的相关汇总介绍

主要包含Set(集)、 List(列表包含 Queue)和 Map(映射)。 1、Collection: Collection 是集合 List、 Set、 Queue 的最基本的接口。 2、Iterator:迭代器,可以通过迭代器遍历集合中的数据。 3、Map:是映射表的…

VTK随笔十三:QT与VTK的交互

一、基于 Ot的 VTK 应用程序 以 VTK 读入一幅 JPG 图像,然后在 Qt 界面上使用 VTK 显示该图像为例,演示QT与VTK的交互。 1、创建QT项目QT_VTK_Demo 2、配置VTK库 在CMakeLists.txt中添加如下代码: 配置完成后重新打开工程加载VTK库。 3、编…

制裁下的转型:俄罗斯加密货币战略布局与人民币挂钩BRICS稳定币的崛起

在国际制裁重压下,俄罗斯正在积极推进加密货币政策改革,通过设立加密货币交易所和推动与人民币挂钩的BRICS稳定币,试图在全球金融体系中谋求新的生存与发展路径。这一系列举措标志着俄罗斯在数字经济领域的重大转向,既是对当前经济…

Linux【5】远程管理

目录 shutdown关机 ifconfig输出网卡信息 ping ip地址——检测连接正常 ssh 【-p port】 userip scp不同主机之间的文件copy 当前文件复制到远程 远程文件复制到本地 复制文件夹 -r shutdown关机 shutdown -r 重启 ifconfig输出网卡信息 ping ip地址——检测连接正常…

集成电路学习:什么是PCB印刷电路板

一、PCB:印刷电路板 PCB,全称为Printed Circuit Board,即印刷电路板,是现代电子设备中不可或缺的基础构件。它作为电子元器件的载体和连接体,在电子设备中发挥着至关重要的作用。以下是对PCB的详细解析: 二…