Meta:大语言模型可以通过自我批判取得大幅提升!

news2024/11/15 10:22:53

图片

 夕小瑶科技说 原创
 作者 | 谢年年

论文的审稿模式想必大家都不会陌生,一篇论文除了分配多个评审,最后还将由PC综合评估各位审稿人的reviews撰写meta-review。

最近,来自Meta的研究团队将这一模式引进到大模型的对齐训练中。模型同时扮演 执行者(actor)、评判者(judge)和元评判者(meta-judge) 三种角色。执行者生成回复,评判者评估生成回复的质量并打分,元评判者则检查评判者的质量,为评判者提供必要的训练反馈。

通过这种方式获得大量回复偏好对,无需人工标注数据,进一步训练对齐模型,显著提高了模型的判断和遵循指令的能力

论文标题:
META-REWARDING LANGUAGE MODELS: Self-Improving Alignment with LLM-as-a-Meta-Judge

论文链接
https://arxiv.org/pdf/2407.19594

图片

方法

本文假设没有任何额外的人工监督数据,仅有一个初始的种子LLM。通过迭代自我对弈,模型同时扮演执行者(actor)、评判者(judge)和元评判者(meta-judge)三种角色。执行者生成回复,评判者评估生成的质量并打分,元评判者则比较评判者的质量,为其提供必要的训练反馈。

虽然最终的目标是训练执行者生成更优质的回复,但评判者评判是否准确也很重要。随着评判者能力的提升,执行者也能获得更好的反馈,从而不断进步。本文提出的 “元奖励机制(Meta-Rewarding)”旨在同时增强执行者和评判者的能力。迭代过程下图所示:

图片

增强执行者和评判者的能力最重要的就是获取大量训练数据。因此每个迭代周期首先由执行者针对每个提示生成多个回复变体,评判者为每个回复打分,为训练执行者构建回复偏好对。

为了训练评判者构建评判偏好对,则选择一个回复,并让元评判者比较评判者针对该回复生成的两个评判变体,以确定哪个更好,这通过LLM作为元评判者的提示来实现,如下图所示:

图片

一旦为执行者和评判者都收集了偏好数据,就通过DPO在数据集上进行偏好优化训练。

接下来详述每个部分数据集构建。

执行者偏好数据集创建

数据集创建过程主要包括三个步骤:

  1. 从执行者获取样本回复假设有一组给定的提示,对于每个提示,在迭代时,从当前模型中抽样生成个不同的回复。

  2. 聚合多个评判对于每个回复,使用“LLM作为评判者”的提示从中生成个不同的评判。

    图片

    该提示指示模型根据固定评分标准对给定提示下的回复进行评价,并输出其推理过程和最终分数(满分5分)。丢弃无效的打分,计算所有有效评判分数的平均值,得到每个回复的最终奖励分数。

  3. 带长度控制的偏好数据选择

    之前的工作简单地选择每个提示下得分最高和最低的回复作为被选回复和被拒绝回复,形成偏好对。然而,这会导致长度爆炸问题,即随着迭代次数增加,回复变得越来越长。

    作者引入了一个简单的长度控制机制。通过定义了一个质量层级参数,以控制基于分数的选择和长度考虑之间的权衡。特别地,得分位于顶层范围内的回复被认为具有相似质量。在选择被选回复时,优先选择该顶层范围内最短的回复。这种方法有助于抵消评判者倾向于更长回复的倾向,从而避免训练数据出现偏差。相反,对于被拒绝回复,选择得分在范围内的最长回复。将设置为0将有效禁用长度控制,恢复为纯基于分数的选择。

评判者偏好数据集创建

作者设计了一个元评审,来对比评判者的好坏。整个过程分为三大步骤,旨在精准挑选出高质量的评审对,并有效减少位置偏差等影响因素。

  1. 响应选择

    为了训练出更加敏锐的评审系统,专注于那些评审意见分歧最大的响应。通过计算每个响应在不同评审间评分的方差,筛选出评分方差最大的响应作为训练材料。

  2. 成对的元评审评估

    对于每个选定的响应,有最多N个相应的评审,记作。然后利用LLM作为元评审,通过详细分析两个评审的判断,模型会生成思维链推理并给出胜负判断。

    为消除位置偏差,变换评审顺序并引入位置加权评分机制,确保评估的公正性。此外,还引入了针对第一和第二位置的获胜加权评分。定义和分别为在第一和第二位置的总获胜次数,并计算权重为:

    图片

    判断()之间单场战斗的结果定义为:

    图片

    最终,这些评估结果汇总成一个战斗矩阵,反映评审间的相对实力。

    图片

  3. Elo评分和成对选择

    借鉴Elo评分系统,作者将战斗矩阵转化为每个评审的元奖励。通过解决以下最大似然估计问题确定每个评审的Elo评分 :

    图片

    这种方法允许在元评判者评估中考虑位置偏差的分数,提供更准确的奖励信号,提高评审质量。在创建偏好对时,选择Elo评分最高和最低的评审输出作为通过和拒绝的评审输出。

    在实践中,元评审可能偏好冗长的评审输出。为纠正这一偏差,作者增设了长度阈值过滤步骤,有效限制了过长输出的影响,实现了评审质量与简洁性的良好平衡。

实验

实验设置

本文使用经过指令微调的 Llama-3-8B-Instruct 作为种子模型。再对种子模型利用[1]提供的评估微调数据集进行监督微调得到初始评判者。

在Meta-Rewarding迭代中,同样以[1]提供的20000个提示作为种子集,每次迭代抽取5000个提示,总共进行四次迭代:

  • Iter 1 通过使用 DPO在SFT模型生成的执行和评审偏好数据对对上训练获得M1。

  • Iter 2 通过在M1生成的执行和评审偏好对上使用 DPO 训练 M1 来获得 M2。

  • Iter 3 通过仅在 M2 生成的执行偏好对上使用 DPO 训练 M2 来获得 M3。

  • Iter 4 通过仅在 M3 生成的执行偏好对上使用 DPO 训练 M3 来获得 M4。

评估与实验分析

由于Meta-Rewarding同时改善模型作为演员和评判者的表现,因此将测量两个方面。

执行者的指令遵循能力

作者采用了三个成熟的GPT4驱动自动评估基准从不同维度评估模型。AlpacaEval 2侧重于日常聊天场景,Arena-Hard则包含复杂与挑战性问题,MT-Bench评估多轮对话能力,覆盖8类问题。

  • Meta-Rewarding迭代显著提升胜率。如下图所示,在AlpacaEval基准上,胜率从22.9%跃升至39.4%,超越GPT-4,逼近Claude Opus,且模型仅8B参数,未用额外人类数据,成效显著。同时,该方法优于使用强大外部奖励模型的强基线SPPO。

    图片

  • 元评判者及长度控制机制对提升至关重要,在没有元评判者参与训练评判者的情况下,仅依赖自奖励基线与长度控制(LC)相结合,虽然能够带来一定程度的改进,但这种改进在训练的后期迭代中显得较为有限。如下表所示,随着训练迭代的进行,平均响应长度并未出现明显增长,这有力地证明了所采用的长度控制机制在控制输出长度方面的稳定性和有效性。

    图片

  • Meta-Rewarding几乎改进了所有指令类别,特别在知识密集型类别如科学、游戏、文学上表现突出(,但在旅行、数学等类别上改进较小。

    图片

  • Meta-Rewarding 改进了复杂和困难问题的回答。 在应对复杂问题上,通过Arena-Hard评估,Meta-Rewarding持续提分,较种子模型提升显著(+8.5%)。

    图片

  • Meta-Rewarding 尽管仅在单轮数据上训练,但并未牺牲多轮能力。 Meta-Rewarding在MT-Bench评估中仍保持了多轮对话能力,最后一轮迭代中首轮得分提升,第二轮得分牺牲微小(<0.1),而以往的方法通常在第二轮得分上牺牲超过 0.2,而第一轮得分没有改善。

图片

评判者的奖励建模能力

作者比较评判者的能力与人类评判和当前最强的判断模型 gpt-4-1106-preview 之间的相关性。还通过斯皮尔曼相关性分析,量化模型生成排名与Open Assistant数据集中的一致性。

模型经Meta-Rewarding训练后,判断能力显著提升。下表显示,与自奖励基线相比,在两种评估设置中,Meta-Rewarding与GPT-4判断的相关性均大幅增强,尤其是无平局一致性指标提升显著。自选对设置中,迭代2时改进高达+12.34%,而GPT-4选择对设置中也超过+6%。这证明了Meta-Rewarding在提升模型判断能力上的有效性,使其更接近GPT-4的评估水平。

图片

Meta-Rewarding 训练提高了与人类的判断相关性。 通过Open Assistant数据集验证,可以看到本文模型与人类排名的相关性显著增加。然而,随着训练深入,这一改进有所减缓,可能与响应分布变化有关。

图片

结语

本文利用元评判者分配元奖励,优化模型判断偏好,克服自奖励框架的训练限制。同时,引入长度控制技术,解决训练中的长度问题。即使没有额外的人类反馈,该方法也显著改善了 Llama-3-8B-Instruct,并超越了依赖于人类反馈的强基线 Self-Rewarding 和SPPO 。并且该模型的判断能力与人类及强大AI评判者(如GPT-4)高度相关。也许随着科技发展,无需人类反馈的模型超对齐将可能实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2106027.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一. 从Hive开始

1. 怎么理解Hive Hive不能理解成一个传统意义上的数据库&#xff0c;应该理解成一个解决方案。 是Hadoop在hdfs和mapreduce之后才出现的一个结构化数据处理的解决方案。 Hdfs解决了大数据的存储问题&#xff0c;mapreduce解决了数据的计算问题。 一切似乎很美好。 但是使用成本…

人机环境系统智能与Petri网

人机环境系统工程是一门新兴的交叉学科&#xff0c;它以人、机、环境为系统&#xff0c;研究系统整体的优化。而 Petri 网是一种用于描述和分析系统动态行为的图形化建模工具。 在人机环境系统中&#xff0c;智能体现在人、机、环境三个要素之间的相互作用和协同工作。人的智能…

【微信小程序】搭建项目步骤 + 引入Tdesign UI

目录 创建1个空文件夹&#xff0c;选择下图基础模板 开启/支持sass 创建公共style文件并引入 引入Tdesign UI: 1. 初始化&#xff1a; 2. 安装后&#xff0c;开发工具进行构建&#xff1a; 3. 修改 app.json 4. 使用 5. 自定义主题色 创建1个空文件夹&#xff0c;选择下…

map和set的使用和底层实现

嗨喽大家好&#xff0c;时隔许久阿鑫又给大家带来了新的博客&#xff0c;c进阶——map和set的使用和底层实现&#xff0c;下面让我们开始今天的学习吧&#xff01; map和set的使用和底层实现 1.set和multiset的使用 2.map和multimap的使用 3.底层结构 1.set和multiset的使…

基于FCM模糊聚类算法的图像分割matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 FCM算法原理 4.2 图像分割中的应用 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2022a 3.部分核心程序 &#xff08;完整版代码包…

单列表集合顶层接口Collection

List&#xff1a;添加元素是有序&#xff0c;可重复&#xff0c;有索引 Set&#xff1a;添加元素是无序&#xff0c;不重复&#xff0c;无索引 Collection是单列集合的祖宗接口&#xff0c;它的功能是全部单列集合都可以继承使用。 1.添加元素 细节1:如果我们要往List系列集…

ArcGIS出图格网小数位数设置

1、比如要去掉格网后面的小数点&#xff0c;如何设置呢&#xff1f; 2、如下图设置。

《软件工程导论》(第6版)第12章 面向对象实现 复习笔记

第12章 面向对象实现 一、面向对象实现概述 1&#xff0e;主要任务 &#xff08;1&#xff09;把面向对象设计结果翻译成用某种程序语言书写的面向对象程序。 &#xff08;2&#xff09;测试并调试面向对象的程序。 2&#xff0e;面向对象程序质量的影响因素 &#xff0…

Redis Pub/Sub模式:分布式系统中的解耦利器

序言 Redis的发布订阅&#xff08;Pub/Sub&#xff09;是一种消息通信模式&#xff0c;允许发布者&#xff08;Publisher&#xff09;发送消息到频道&#xff08;Channel&#xff09;&#xff0c;而订阅者&#xff08;Subscriber&#xff09;可以订阅一个或多个频道来接收消息…

惠中科技光伏清洗剂:绿色清洁,高效发电的守护者

在当今全球能源转型的大背景下&#xff0c;光伏产业作为绿色能源的重要组成部分&#xff0c;正以前所未有的速度蓬勃发展。然而&#xff0c;光伏板长期暴露于户外环境&#xff0c;不可避免地会遭受灰尘、鸟粪、油污等污染物的侵袭&#xff0c;这些污染物如同阴影般覆盖在光伏板…

代码随想录Day 35|动态规划,二维dp数组,滚动数组,leetcode题目:416.分割等和子集

提示&#xff1a;DDU&#xff0c;供自己复习使用。欢迎大家前来讨论~ 文章目录 动态规划Part03一、 动态规划&#xff1a;01背包理论基础01 背包二维dp数组01背包 二、动态规划&#xff1a;01背包理论基础&#xff08;滚动数组&#xff09;思路一维dp数组&#xff08;滚动数组&…

echarts三维立体扇形图+三维立体环形图配置详解记录

先看效果&#xff0c;注&#xff1a;三维立体echarts比较吃性能&#xff0c;同一页面如果有多个三维图进行渲染&#xff0c;进行跳转时可呢能会对整体页面产生影响&#xff0c;具体解决方法可查看本人另一篇文章 多个echarts使用3D导致页面卡顿的解决办法 三维立体扇形图 三维…

c# Avalonia 架构开发跨平台应用

实现了一个计算器的应用&#xff0c;先看在不同平台的效果 windows11上 ubuntu上 统信UOS 上 麒麟 kylin v10 好了&#xff0c;先说一下问题&#xff0c;如果想一套代码在不同平台同时运行&#xff0c;里面调用的逻辑还是要分系统的&#xff0c;先分linux系统和windows系统&a…

2024年全国铁路(铁路、高铁、地铁)矢量数据集

数据更新时间​&#xff1a;2024年6月​&#xff1b; ​数据范围&#xff1a;全国各省&#xff08;不包含台湾&#xff09;; 数据格式​&#xff1a;shp; ​数据包含类型&#xff1a;铁路、高铁、地铁 数据​坐标信息&#xff1a; EPSG Code 4326 大地基准面 D_WGS_1…

CTFSHOWRCE

web3 1.打开环境&#xff0c;上面给了一句php的话&#xff0c;意思是get传参url有文件包含漏洞 2.get传参运用伪协议&#xff0c;post传参命令执行看目录。 3.上面有一个文件ctf_go_go_go,访问这个文件就有flag web4 1.打开环境&#xff0c;和上一关的一样&#xff0c;但是不…

CSS实现优惠券透明圆形镂空打孔效果等能力学习

前言&#xff1a;无他&#xff0c;仅供学习记录&#xff0c;通过一个简单的优惠券Demo实践巩固CSS知识。 本次案例主要学习或巩固一下几点&#xff1a; 实现一个简单的Modal&#xff1b;如何进行复制文本到粘贴板&#xff1b;在不使用UI的svg图片的情况下&#xff0c;如何用C…

【C++】模板特化

目录 一、非类型模板参数 二、模板的特化 &#x1f31f;概念 扩展小知识补充(1)&#xff1a; 扩展小知识补充(2)&#xff1a; &#x1f31f;函数模板特化 扩展小知识&#xff1a; &#x1f31f;类模板特化 ✨全特化 ✨偏特化 • 部分特化&#xff1a;将模板参数表中…

前端几种常见框架【第一节】

​ 大家好&#xff0c;我是程序员小羊&#xff01; 前言&#xff1a; 最近比较忙&#xff0c;本人在复习软考中级设计考试&#xff0c;所以本系列文从零基础开始复习软考到结束软考&#xff08;计算机技术与软件专业技术资格考试&#xff09;作为国家级职业资格认证考试&#x…

ROS2 2D相机基于AprilTag实现3D空间定位最简流程

文章目录 前言驱动安装下载安装方式一&#xff1a;方式二&#xff1a; 相机检测配置config文件编译、运行程序注意 内参标定标定板运行程序 apriltag空间定位标签打印下载安装可视化结果 前言 AprilTag是一种高性能的视觉标记系统&#xff0c;广泛应用于机器人导航、增强现实和…

简述CCS平面线性光源

光源在机器视觉系统中起着重要作用&#xff0c;不同环境、场景及应用合适光源都不一样&#xff0c;今天我们来看看LFX3-PT系列平面线性光源。它是最适合检测镜面物体的凹凸,外壳小巧的光源。备有根据检测条件可选的2种线间距。1mm型&#xff08;型号末尾&#xff1a;A&#xff…