RAG 实践- Ollama+RagFlow 部署本地知识库

news2024/12/23 18:28:54

前言

本文我们介绍另一种实现方式:利用 Ollama+RagFlow 来实现,其中 Ollama 中使用的模型仍然是Qwen2

我们再来回顾一下 RAG 常见的应用架构

图片

RagFlow的安装和部署

前置条件

  • CPU >= 4 核
  • RAM >= 16 GB
  • Disk >= 50 GB
  • Docker >= 24.0.0 & Docker Compose >= v2.26.1

安装

克隆仓库

$ git clone https://github.com/infiniflow/ragflow.git

进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:

在这里插入图片描述

这一步注意docker 下载的镜像比较大,要留有足够的存储空间,我这边观察下载了约 10 个 G 左右。

服务器启动成功后再次确认服务器状态:

$ docker logs -f ragflow-server

图片

这里注意,安装完成后并不是要进入 下面两个地址

  • http://127.0.0.1:9380
  • http://172.18.0.6:9380

而是要进入:http://localhost:80 先注册账号,是下面这个页面

图片

注册登录

在上图的界面中注册,然后登录就来到下面这个页面了

图片

配置 Ollama 连接大模型

如下图我们先配置模型,点击右上角头像,再点击模型提供商

图片

这里我是想连接我本地已经安装部署好的 Ollama ,通过 Ollama 我安装了 Qwen2 大模型,具体的安装步骤在之前的那篇文章里,有需要的可以移步到那里看。

打开Ollama 后, 我是通过服务器模式启动的大模型

ollama serve

当然你也可以选择其他平台和其他模型,需要提供 API key,API key 的获取就去你所选模型的网站,现在有很多模型的 API 是有免费额度的。

图片

接着我们在 RagFlow 中配置模型,注意由于 RagFlow 我是在 docker 中安装的,所以请求本地部署的 Ollama 地址要用 :http://host.docker.internal:11434

图片

创建知识库

接下来我们就可以创建知识库了

图片

注意这里的文件类型没有 markdown,但我实测 markdown 是可以的。其他的选项,根据你的情况自行设置就好,很简单。

接下来就是上传你的文件了,也比较简单,但我发现上传后文件处理的比较慢,应该是我电脑配置的原因

图片

文件上传并处理完成后,可以通过检索测试看一下文件有没有被正确检索。

至此,如果你上传完成全部的文件,知识库就算创建完毕了。

聊天

接着就到了展示成果的时候了,我们可以根据自己的知识库与模型进行自然语言交互了。

首先注意,在聊天配置中要把 token 设置的大一些,不然回复的内容会很少!我这里把它拉到最大值了。

图片

展示一下成果:

图片

我觉得还算满意。但是由于我笔记本配置一般,也没有显卡支持,所以跑的很慢,真的很慢。但如果部署在有 GPU 的服务器上,企业私有化部署供内部使用,应该会比较快的。

图片

思考

我这里的例子是用个人笔记本电脑上的资料做的个人知识库,对于文档的提问,无论是围绕着摘要总结来做,还是围绕着全文检索,答案看起来还行,也基本能用。但是这是面向个人的或者说面向 C 端 ,如果面向 B 端面向企业单靠向量检索就力不从心了,一来无法对精确信息召回,二来无法与企业内部信息系统集成(大量结构化数据)。所以必须在检索阶段引入多路召回和重排序,保证数据查询的准确度。

企业内部的数据包含各种格式,更复杂的还包含各类图表等,如果在没有理解这些语义的基础之上直接提供 RAG 方案,例如简单的根据文字空白就来切分段落,就会导致语义丢失从而让最终查询的结果也是混乱不堪。

如果解决这个问题呢,除了之前说的多路召回(多跳)和重排序这种方案,目前业界还有其他思路,比如 infiniFlow提出的 Infinity AI原生数据库(https://github.com/infiniflow/infinity)

图片

从上图可以看到,AI原生数据库 不仅涵盖非结构化的内容如文档和图片,也包括结构化的信息系统。对这些信息进行有效整合,并在此基础上实现多路召回机制和最终的融合排序解决方案。

图片

此外,很多AI 产品的上下文现在是越来越长,可能有人会说现在上下文都这么长了,还用得着 RAG 吗?我认为,RAG在知识库问答场景依然是非常必要的。LLM 的长上下文能力,对于 RAG 来说应该是很大的促进。用 OpenAI 联创 Andrej Karpathy 的一张图做个类比,他把 LLM 比喻为一台计算机的 CPU, 把上下文类比为计算机的内存,那么以向量为代表的数据库,就可以看作是这台计算机的硬盘

图片

显然你不可能买一台只有内存的电脑。内存可以很大,但也意味着很贵,并且短时间内替代不了硬盘的作用。

最后是准确性问题,关于这个问题一般有两个方向的解决思路,一种是从 RAG 下手,比如做 Embedding 模型的微调。一种是从 LLM 下手,做 LLM 微调。虽然两种我都没真正做过,但从研读的资料上得知RAG系统在实时性和成本方面相较于LLM微调具有优势,因此更受青睐。这点跟我的直觉一致。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2103872.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

迅为RK3568 开发板赋能数字广告,推动智能化使用北京迅为RK3568核心板作为广告机主控

广告机作为一种高效且灵活的宣传工具,正逐步成为商场、车站、机场等各类公共场所的标配。广告机通过数字化的方式展示广告内容和提供实时信息更新,有效地提升了广告和信息的覆盖率。 如何设计一款广告机,根据广告机的需求和工作环境&#x…

2024年住宅代理市场概况:趋势与选择指南

在数字化时代,网络安全和数据保护越来越受到重视。尤其在网络环境中,真实的IP地址成为保护个人信息安全和数据安全的重要抓手。住宅代理作为一种有效的解决方案,在这个领域扮演了关键角色。本文将探讨2024年住宅代理市场的概况,分…

【CTF Web】BUUCTF Upload-Labs-Linux Pass-03 Writeup(文件上传+PHP+特殊可解析扩展名绕过)

Upload-Labs-Linux 1 点击部署靶机。 简介 upload-labs是一个使用php语言编写的,专门收集渗透测试和CTF中遇到的各种上传漏洞的靶场。旨在帮助大家对上传漏洞有一个全面的了解。目前一共20关,每一关都包含着不同上传方式。 注意 1.每一关没有固定的…

数据库:笔记01绪论

基本概念 数据(Data) 描述事物的符号记录称为数据,并且可以数字化存入计算机。 数据的含义称为数据的语义,数据与其语义是不可分的。 数据库(DataBase,DB) 存放数据的仓库 数据库数据具有永久存储、有…

【大模型测评】2024大语言模型综合能力测评报告(免费下载)

前言 2024年大语言模型综合能力测评报告揭示了全球大模型市场的爆发式增长,特别是在算法架构、数据处理和应用场景上的显著进步。 从2017年的诞生阶段到2023年的爆发期,大模型技术经历了从Transformer神经网络架构的奠基到多模态理解与内容生成能力的飞…

笔试,牛客.kotori和n皇后​,牛客.AOE还是单体

目录 牛客.kotori和n皇后​编辑 牛客.AOE还是单体 牛客.kotori和n皇后 想起来,我之前还写过n皇后的题,但是这个我开始只能想到暴力解法 判断是不是斜对角线,联想yxb和y-xb,假如在一条线上,那么他们的x和y会对应成比例&#xff0c…

iscntrl函数讲解 <ctype.h>头文件函数

目录 1.头文件 2.iscntrl函数 1.头文件 以上这些函数都属于头文件<ctype.h>中的函数,其中包括iscntrl函数 #include<ctype.h> 2.iscntrl函数 简述&#xff1a;iscntrl 函数用来判断字符是否为控制字符&#xff0c;控制字符为ASCII值在0x00到0x7f之间 控制字符主…

在 Facebook 上投放广告需要多少钱?

Facebook 拥有 23.2 亿的月活跃用户&#xff0c;用户体量非常庞大&#xff0c;你的目标群体出现在社交媒体平台上的可能性非常高&#xff0c;所以企业会选择在Facebook 上投放广告。很多朋友想入局&#xff0c;但总是在思考Facebook 推广到底要花多少钱才能有效&#xff1f;如果…

Unknown command: “create-react-app“

在创建react项目时出现报错" Unknown command: "create-react-app" " 解决方法&#xff1a; 配置全局变量&#xff0c;" win r " 打开cmd窗口&#xff0c;输入下列命令&#xff0c;回车等待结束即可&#xff1a; npx create-react-app my-pro…

中国电子学会Python3级等级考试202403客观题解析4

二、判断题 26、十六进制 3C 转换成八进制为 74。&#xff08; &#xff09; A 正确 B 错误 答案&#xff1a;A 使用“填空法”&#xff0c;先将3C转换为十进制&#xff0c;之后再使用“填空法”或“除8法”将十进制数转换为八进制。 知识扩展&#xff1a;其它进制&#…

边缘智能网关 P1600:智慧城市的创新引擎

智慧城市&#xff08;Smart City&#xff09;是以发展更科学、管理更高效、生活更美好为目标&#xff0c;以信息技术和通信技术为支撑&#xff0c;通过透明、充分的信息获取&#xff0c;广泛、安全的信息传递和有效、科学的信息处理&#xff0c;提高城市运行效率&#xff0c;改…

Shell脚本快速入门(Linux篇)

1.Shell介绍 Shell 是一个 C 语言编写的脚本语言&#xff0c;它是用户与 Linux 的桥梁&#xff0c;用户输入命令交给 Shell 处理&#xff0c;Shell 将相应的操作传递给内核&#xff08;Kernel&#xff09;&#xff0c;内核把处理的结果输出给用户。 Shell 是指一种应用程序&am…

用亚马逊AI代码开发助手Amazon Q Developer开发小游戏(中篇)

快用人工智能帮程序员写代码、开发游戏&#xff01;今天小李哥就来介绍亚马逊推出的国际前沿人工智能AI代码开发助手Amazon Q Developer。目前该代码助手在Hugging Face代码生成权威测试集SWE-bench中排名第一&#xff0c;可以根据我们的需求生成整个代码项目&#xff0c;并可以…

(待更)数据结构与算法:字符串和KMP算法原理(附有leetcode344、541、151、459题解)

字符串交换相关 leetcode344.反转字符串 注意&#xff1a;这里的s是str数组 class Solution(object):def reverseString(self, s):""":type s: List[str]:rtype: None Do not return anything, modify s in-place instead."""n len(s)i 0j …

【C++】容器list常用接口详解

目录 一.基本介绍 二.list的使用 1.构造函数 2.迭代器 3.遍历方式 4.容量相关操作 5.增删改查 三.list迭代器失效问题 四.算法库函数和list关系 一.基本介绍 list是一个带头双向循环链表由于是链表&#xff0c;物理空间不连续&#xff0c;不支持随机访问数据&#xff0…

《机器学习》周志华-CH6(支持向量机)

6.1间隔与支持向量 给定训练样本 D { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) } , y i ∈ { − 1 , 1 } D\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\},y_i\in\{-1,1\} D{(x1​,y1​),(x2​,y2​),...,(xm​,ym​)},yi​∈{−1,1}分类学习最基本的想法是基于训练集…

SQL优化神器 SQLAdvisor

简介 SQLAdvisor是一款开源的SQL优化工具&#xff0c;由美团点评公司的技术工程部DBA团队开发与维护。作为一个分析SQL语句并提出索引优化建议的工具&#xff0c;它基于MySQL原生词法解析&#xff0c;结合SQL中的where条件、字段选择度、聚合条件、多表Join关系等&#xff0c;…

爆改YOLOv8|利用yolov10的C2fCIB改进yolov8-高效涨点

1&#xff0c;本文介绍 本文介绍了一种改进机制&#xff0c;通过引入 YOLOv10 的 C2fCIB 模块来提升 YOLOv8 的性能。C2fCIB 模块中的 CIB&#xff08;Compact Inverted Bottleneck&#xff09;结构采用了高效的深度卷积进行空间特征混合&#xff0c;并使用点卷积进行通道特征…

PLM系统在企业数字化转型中的关键作用 三品PLM在制造业转型实例分析

在当今数字化时代&#xff0c;企业面临着日益激烈的市场竞争和快速变化的客户需求。为了保持竞争力并实现可持续发展&#xff0c;企业纷纷进行数字化转型。而PLM产品生命周期管理系统作为数字化转型的关键组成部分&#xff0c;其在企业中的应用显得尤为重要。本文将探讨PLM系统…

AAA原理与配置

定义 AAA是Authentication&#xff08;认证&#xff09;、Authorization&#xff08;授权&#xff09;和Accounting&#xff08;计费&#xff09;的简称&#xff0c;是网络安全的一种管理机制&#xff0c;提供了认证、授权、计费三种安全功能。 这三种安全功能的具体作用如下…