Tensorflow实现深度学习8:猫狗识别

news2024/9/27 23:27:17

本文为为🔗365天深度学习训练营内部文章

原作者:K同学啊

 一 导入数据

import matplotlib.pyplot as plt
import tensorflow as tf
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

import os,PIL,pathlib

#隐藏警告
import warnings
warnings.filterwarnings('ignore')

data_dir = "./data"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)
图片总数为: 3400

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 8
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 2720 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 680 files for validation.
class_names = train_ds.class_names
print(class_names)
['cat', 'dog']

2. 再次检查数据 

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(8, 224, 224, 3)
(8,)

3. 配置数据集

  • shuffle() : 打乱数据
  • prefetch() :预取数据,加速运行
  • cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

 在这里数据处理的过程中,比前几次稍微不同的是多加了一个归一化的处理

4.可视化数据 

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

三、构建VG-16网络

VGG优缺点分析:

  • VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。

  • VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中。

结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

 

构建方法1:调用官网封装好的模型函数 

model = tf.keras.applications.VGG16(weights='imagenet')
model.summary()
Model: "vgg16"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 224, 224, 3)]     0         
                                                                 
 block1_conv1 (Conv2D)       (None, 224, 224, 64)      1792      
                                                                 
 block1_conv2 (Conv2D)       (None, 224, 224, 64)      36928     
                                                                 
 block1_pool (MaxPooling2D)  (None, 112, 112, 64)      0         
                                                                 
 block2_conv1 (Conv2D)       (None, 112, 112, 128)     73856     
                                                                 
 block2_conv2 (Conv2D)       (None, 112, 112, 128)     147584    
                                                                 
 block2_pool (MaxPooling2D)  (None, 56, 56, 128)       0         
                                                                 
 block3_conv1 (Conv2D)       (None, 56, 56, 256)       295168    
                                                                 
 block3_conv2 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_conv3 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_pool (MaxPooling2D)  (None, 28, 28, 256)       0         
                                                                 
 block4_conv1 (Conv2D)       (None, 28, 28, 512)       1180160   
                                                                 
 block4_conv2 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_conv3 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_pool (MaxPooling2D)  (None, 14, 14, 512)       0         
                                                                 
 block5_conv1 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv2 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv3 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_pool (MaxPooling2D)  (None, 7, 7, 512)         0         
                                                                 
 flatten (Flatten)           (None, 25088)             0         
                                                                 
 fc1 (Dense)                 (None, 4096)              102764544 
                                                                 
 fc2 (Dense)                 (None, 4096)              16781312  
                                                                 
 predictions (Dense)         (None, 1000)              4097000   
                                                                 
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_________________________________________________________________

构建方法二:自己手动搭建模型 

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout

def VGG16(nb_classes, input_shape):
    input_tensor = Input(shape=input_shape)
    # 1st block
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
    x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
    # 2nd block
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
    x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
    # 3rd block
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
    x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
    # 4th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
    # 5th block
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
    x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
    x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
    # full connection
    x = Flatten()(x)
    x = Dense(4096, activation='relu',  name='fc1')(x)
    x = Dense(4096, activation='relu', name='fc2')(x)
    output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)

    model = Model(input_tensor, output_tensor)
    return model

model=VGG16(1000, (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 224, 224, 3)]     0         
                                                                 
 block1_conv1 (Conv2D)       (None, 224, 224, 64)      1792      
                                                                 
 block1_conv2 (Conv2D)       (None, 224, 224, 64)      36928     
                                                                 
 block1_pool (MaxPooling2D)  (None, 112, 112, 64)      0         
                                                                 
 block2_conv1 (Conv2D)       (None, 112, 112, 128)     73856     
                                                                 
 block2_conv2 (Conv2D)       (None, 112, 112, 128)     147584    
                                                                 
 block2_pool (MaxPooling2D)  (None, 56, 56, 128)       0         
                                                                 
 block3_conv1 (Conv2D)       (None, 56, 56, 256)       295168    
                                                                 
 block3_conv2 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_conv3 (Conv2D)       (None, 56, 56, 256)       590080    
                                                                 
 block3_pool (MaxPooling2D)  (None, 28, 28, 256)       0         
                                                                 
 block4_conv1 (Conv2D)       (None, 28, 28, 512)       1180160   
                                                                 
 block4_conv2 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_conv3 (Conv2D)       (None, 28, 28, 512)       2359808   
                                                                 
 block4_pool (MaxPooling2D)  (None, 14, 14, 512)       0         
                                                                 
 block5_conv1 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv2 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_conv3 (Conv2D)       (None, 14, 14, 512)       2359808   
                                                                 
 block5_pool (MaxPooling2D)  (None, 7, 7, 512)         0         
                                                                 
 flatten (Flatten)           (None, 25088)             0         
                                                                 
 fc1 (Dense)                 (None, 4096)              102764544 
                                                                 
 fc2 (Dense)                 (None, 4096)              16781312  
                                                                 
 predictions (Dense)         (None, 1000)              4097000   
                                                                 
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_________________________________________________________________

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

 

# 设置初始学习率
initial_learning_rate = 1e-4

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=30,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

 早停法:

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

epochs = 10

# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=20, 
                             verbose=1)

五、训练模型

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])
Epoch 1/10
340/340 [==============================] - ETA: 0s - loss: 0.2396 - accuracy: 0.8930
Epoch 1: val_accuracy improved from -inf to 0.99412, saving model to best_model.h5
340/340 [==============================] - 1376s 4s/step - loss: 0.2396 - accuracy: 0.8930 - val_loss: 0.0210 - val_accuracy: 0.9941
Epoch 2/10
340/340 [==============================] - ETA: 0s - loss: 0.0276 - accuracy: 0.9908
Epoch 2: val_accuracy did not improve from 0.99412
340/340 [==============================] - 1345s 4s/step - loss: 0.0276 - accuracy: 0.9908 - val_loss: 0.0465 - val_accuracy: 0.9853
Epoch 3/10
340/340 [==============================] - ETA: 0s - loss: 0.1150 - accuracy: 0.9717
Epoch 3: val_accuracy did not improve from 0.99412
340/340 [==============================] - 1316s 4s/step - loss: 0.1150 - accuracy: 0.9717 - val_loss: 0.0704 - val_accuracy: 0.9750
Epoch 4/10
340/340 [==============================] - ETA: 0s - loss: 0.0192 - accuracy: 0.9949
Epoch 4: val_accuracy improved from 0.99412 to 0.99853, saving model to best_model.h5
340/340 [==============================] - 1336s 4s/step - loss: 0.0192 - accuracy: 0.9949 - val_loss: 0.0083 - val_accuracy: 0.9985
Epoch 5/10
340/340 [==============================] - ETA: 0s - loss: 0.0248 - accuracy: 0.9930
Epoch 5: val_accuracy did not improve from 0.99853
340/340 [==============================] - 1321s 4s/step - loss: 0.0248 - accuracy: 0.9930 - val_loss: 0.0036 - val_accuracy: 0.9985
Epoch 6/10
340/340 [==============================] - ETA: 0s - loss: 0.0240 - accuracy: 0.9937
Epoch 6: val_accuracy did not improve from 0.99853
340/340 [==============================] - 1323s 4s/step - loss: 0.0240 - accuracy: 0.9937 - val_loss: 0.0074 - val_accuracy: 0.9956
Epoch 7/10
340/340 [==============================] - ETA: 0s - loss: 0.0039 - accuracy: 0.9982
Epoch 7: val_accuracy did not improve from 0.99853
340/340 [==============================] - 1324s 4s/step - loss: 0.0039 - accuracy: 0.9982 - val_loss: 0.0069 - val_accuracy: 0.9971
Epoch 8/10
340/340 [==============================] - ETA: 0s - loss: 8.3202e-04 - accuracy: 1.0000
Epoch 8: val_accuracy did not improve from 0.99853
340/340 [==============================] - 1318s 4s/step - loss: 8.3202e-04 - accuracy: 1.0000 - val_loss: 0.0205 - val_accuracy: 0.9956
Epoch 9/10
340/340 [==============================] - ETA: 0s - loss: 0.0759 - accuracy: 0.9801
Epoch 9: val_accuracy did not improve from 0.99853
340/340 [==============================] - 1326s 4s/step - loss: 0.0759 - accuracy: 0.9801 - val_loss: 0.0372 - val_accuracy: 0.9882
Epoch 10/10
340/340 [==============================] - ETA: 0s - loss: 0.0242 - accuracy: 0.9934
Epoch 10: val_accuracy did not improve from 0.99853
340/340 [==============================] - 1328s 4s/step - loss: 0.0242 - accuracy: 0.9934 - val_loss: 0.0072 - val_accuracy: 0.9985

六 模型评估 

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

预测 

import numpy as np

# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("预测结果展示")

for images, labels in val_ds.take(1):
    for i in range(8):
        ax = plt.subplot(1,8, i + 1)  
        
        # 显示图片
        plt.imshow(images[i].numpy())
        
        # 需要给图片增加一个维度
        img_array = tf.expand_dims(images[i], 0) 
        
        # 使用模型预测图片中的人物
        predictions = model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])

        plt.axis("off")
1/1 [==============================] - 1s 609ms/step
1/1 [==============================] - 0s 123ms/step
1/1 [==============================] - 0s 140ms/step
1/1 [==============================] - 0s 134ms/step
1/1 [==============================] - 0s 129ms/step
1/1 [==============================] - 0s 126ms/step
1/1 [==============================] - 0s 124ms/step
1/1 [==============================] - 0s 123ms/step

 

在训练模型的时候,除了用上述的代码之外,还可以用另一种方式。

改用model.train_on_batch方法。两种方法的比较:

  • model.fit():用起来十分简单,对新手非常友好
  • model.train_on_batch():封装程度更低,可以玩更多花样。

此外我也引入了进度条的显示方式,更加方便我们及时查看模型训练过程中的情况,可以及时打印各项指标

 

model.compile(optimizer="adam",
              loss     ='sparse_categorical_crossentropy',
              metrics  =['accuracy'])
from tqdm import tqdm
import tensorflow.keras.backend as K

epochs = 10
lr     = 1e-4

# 记录训练数据,方便后面的分析
history_train_loss     = []
history_train_accuracy = []
history_val_loss       = []
history_val_accuracy   = []

for epoch in range(epochs):
    train_total = len(train_ds)
    val_total   = len(val_ds)
    
    """
    total:预期的迭代数目
    ncols:控制进度条宽度
    mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
    """
    with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=1,ncols=100) as pbar:
        
        lr = lr*0.92
        K.set_value(model.optimizer.lr, lr)

        for image,label in train_ds:   
            """
            训练模型,简单理解train_on_batch就是:它是比model.fit()更高级的一个用法

            想详细了解 train_on_batch 的同学,
            可以看看我的这篇文章:https://www.yuque.com/mingtian-fkmxf/hv4lcq/ztt4gy
            """
            history = model.train_on_batch(image,label)

            train_loss     = history[0]
            train_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%train_loss,
                              "accuracy":"%.4f"%train_accuracy,
                              "lr": K.get_value(model.optimizer.lr)})
            pbar.update(1)
        history_train_loss.append(train_loss)
        history_train_accuracy.append(train_accuracy)
            
    print('开始验证!')
    
    with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}',mininterval=0.3,ncols=100) as pbar:

        for image,label in val_ds:      
            
            history = model.test_on_batch(image,label)
            
            val_loss     = history[0]
            val_accuracy = history[1]
            
            pbar.set_postfix({"loss": "%.4f"%val_loss,
                              "accuracy":"%.4f"%val_accuracy})
            pbar.update(1)
        history_val_loss.append(val_loss)
        history_val_accuracy.append(val_accuracy)
            
    print('结束验证!')
    print("验证loss为:%.4f"%val_loss)
    print("验证准确率为:%.4f"%val_accuracy)

 ​​​​​

 对比之前的model.fit()方法,这次还引用了更详细的进度条。后续的操作和上述方法一样

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2089251.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开放式耳机会漏音吗?开放式耳机测评

开放式耳机由于其独特的设计,允许声音在一定程度上自然地与外界环境融合。这种设计带来的一个常见误解是,人们可能会认为开放式耳机会有较大的声音泄露。然而,实际上,高质量的开放式耳机通过精心的声学设计,可以有效地…

Video Recording,视频录制

一.录屏软件 1.1 Xbox Game Bar 对于 win 来说,快捷键是 Win G,即可以启动 Xbot Game Bar 来进行录制。但是有一个比较致命的缺点就是,当我们切换页面的时候,录制就会失败,这款还是很适合于单页面的视频录制。 1.2 …

Python以及Python历史版本的安装的安装

文章目录 前言Python的安装Python历史版本下载总结 前言 Python 是一种广泛使用的高级编程语言,以其简洁易读的语法和强大的功能而受到开发者的青睐。从数据分析到网页开发,从自动化脚本到人工智能,Python 的应用领域几乎无处不在。然而&…

深度学习论文被评“创新性不足、工作量不够”怎么办?

投稿时遇到审稿人提出文章创新性不足、工作量不够,该怎么办? 今天我就来分享三种应对方法:下采样策略、归一化策略、改进网络模型。 改进网络模型 增加创新性: 从模型架构和训练策略这两方面入手: 模型架构创新&a…

c++ 135 错误: 成员函数的作用 内存四区

1。 类中不写成员函数 现在要求c1 的属性 原来怎么求的: 虽然把r改成10 但是没有执行area的那句话 area还是一个未知变量 当执行c1.area时 只是内存变量标示的内存空间拿值 跟r10 没有半毛钱关系 面向过程转换成面向对象

代码随想录 | 贪心算法总结

贪心理论基础 在贪心系列开篇词贪心算法理论基础中,我们就讲解了大家对贪心的普遍疑惑。 贪心很简单,就是常识? 贪心思路往往很巧妙,并不简单。 贪心有没有固定的套路? 贪心无套路,也没有框架之类的&a…

MarsCode代码练习能力初体验

MarsCode代码练习能力初体验 地址:https://sourl.cn/JJeBEF 最近MarsCode上线了代码练习能力,对准备算法题的同学来说是一个福音。下面是编程主界面。 除了左边内置的算法外,还可以手动添加题目自己练习,AI会去理解题目&#xf…

Java整体基础知识体系图

一 java 介绍 ‌Java是一种高级编程语言,由Sun Microsystems公司于1995年推出。‌ Java具有跨平台性、面向对象、健壮性、安全性、可移植性等特点,被广泛应用于企业级应用开发、移动应用开发、大数据处理、云计算等领域。Java程序可以在不同的操作系统上…

鸿蒙开发—黑马云音乐之music页面播放音乐(上)

目录 1.封装播放对象管理类 2.musicPage中调用AvPlayerManager完成播放歌曲 3.index.ets的播放信息样式 4.musicPage向index传数据 1.封装播放对象管理类 封装一个播放对象,之后播放音乐直接调用该对象。 src/main/ets/services/AvPlayerManager.ets&#xff…

本地Linux系统搭建Plik临时文件上传站点并实现远程访问共享文件

文章目录 前言1. Docker部署Plik2. 本地访问Plik3. Linux安装Cpolar4. 配置Plik公网地址5. 远程访问Plik6. 固定Plik公网地址7. 固定地址访问Plik 前言 本文介绍如何使用Linux docker方式快速安装Plik并且结合Cpolar内网穿透工具实现远程访问,实现随时随地在任意设…

虚幻地形高度图生成及测试

虚幻地形高度图生成及测试 虚幻引擎地形系统将高度数据存储在高度图中,这是一个灰阶图像,使用黑白色值来存储地貌高程。在高度图中,纯黑色值表示最低点,纯白色值表示最高点。支持16位灰阶PNG、8位灰阶r8及16位灰阶r16格式。 本文…

纯vue实现笔记系统

前言 最近研究了一个笔记记录系统,然后突然想到一个问题,我该如何才能只用前端就实现笔记的记录系统?经过这两天的研究将其做出来了,接下来将分享实现的过程 ✨✨✨✨✨✨✨✨✨✨ 项目演示 在我的项目中,是可以适…

PCIe prefix总结

这周研究了一下spec中关于prefix的部分,在此做一个总结,欢迎大家指正补充。 TLP Prefix基本介绍 • TLP 第 0 字节的 Fmt [2:0] 字段值为 100b 表示当前 DW 为 TLP Prefix 。 • TLP Prefix 分为两大类: Local 和 End-End ,其中…

深入理解归并排序

目录 一、概念 二、递归版实现 三、非递归实现 三、文件归并排序 小结 一、概念 归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将…

海外新闻稿发布:企业如何充分利用数字化媒体进行

在全球数字化进程加速的时代,企业要在激烈的国际市场中脱颖而出,利用数字化媒体进行海外新闻稿发布是一个不可或缺的战略。精确的策略和有效的执行能够帮助企业获得更高的曝光度和市场份额。以下将从多个角度探讨如何充分利用数字化媒体进行海外新闻稿发…

万亿生成式AI市场,商汤迎来“长坡厚雪”

AI掀起了全球科技玩家的军备竞赛,然而声浪越强噪音越多,这个领域的混乱程度也变得远超以往。就连刚刚公布财报的英伟达,市场也没有买账,因为担心AI驱动的增长高峰已过,接下来,下游会更看重实际成果。 “囤…

【电子数据取证】微信8.0.50版本数据库解密

文章关键词:电子数据取证、手机取证、微信取证、数据库解密 通过对8.0.50这一特定版本的分析,我们期望揭示软件迭代背后的逻辑思考,以及安全策略的演进方向。这不单纯是对技术细节的揭秘,更是一次关于未来通信安全趋势的展望&…

在Linux中如何安装JDK

一、卸载JDK (可以不删除,直接安装新的JDK,然后修改环境变量) 1.1卸载使用yum安装的jdk 1.1.1卸载系统预安装的JDK 使用命令:yum list installed |grep java 注意:该命令只能查看使用yum命令安装的jav…

python模块和包的区别有哪些

模块:就是.py文件,里面定义了一些函数和变量,需要的时候就可以导入这些模块。 包:在模块之上的概念,为了方便管理而将文件进行打包。包目录下第一个文件便是 __init__.py,然后是一些模块文件和子目录&…

pytorch 均方误差损失函数

均方误差损失函数主要用于回归问题。它计算预测值与真实值之间差的平方,然后取平均值。这个损失函数通过惩罚大的误差,使得模型在训练时更加注重减少较大的偏差。 import torch import torch.nn as nn# 创建预测值和实际值张量 predicted torch.tensor(…