MATLAB进阶:应用微积分

news2024/11/14 13:50:36

今天我们继续学习matlab中的应用微积分

求导(微分)

1、数值微分

n维向量x=(xi,x,… x)的差分定义为n-1维向量△x=(X2-X1,X3-X2,…,Xn- Xn-1)。

diff(x)

如果x是向量,返回向量x的差分如果x是矩阵,则按各列作差分。

diff(x,k)

k阶差分,即差分k次。

原理:

函数f(x)在点x= xo的导数为:

代码为:

clear;
定义x,y
x=[1 1.1 1.2 1.3]; y=x.^3;
标准答案
3*x.^2
ans =
3.0000 3.6300 4.3200 5.0700
差分做法
dy=diff(y)/diff(x)

dy =
3.3100 3.9700 4.6900

我们看出差分法做导数求近似解的误差较大,是因为原式中△x是无限趋近于0的。

而此差分法的精度仅为0.1,故误差较大,在一般求导过程中,我们不会使用此方法,而是使用matlab中其他内置函数。

2、数值梯度微分

Fx=gradient(F,x)

返回向量F表示的一元函数沿x方向的导函数F'(x).其中x是与F同维数的向量.

[Fx,Fy]=gradient(F,x,y)

返回矩阵F表示的二元函数的数值梯度(F' x,F’y),当F为m*n矩阵时,x,y分别为n维和m维的向量。

代码为:

clear;
定义x,y
x=[1 1.1 1.2 1.3]; y=x.^3;
标准答案
3*x.^2
ans =
3.0000 3.6300 4.3200 5.0700

数值梯度做法
dy = gradient(y, x); % 使用 x 作为间距

dy =
3.3100  3.6400  4.3300  4.6900

可以看到,gradient(F,x)函数两端与标准答案比起来是有一定误差的,但是在函数体中间误差并没有很大。所以我们可以用这个函数来近似的求原函数的导数。

求积分

1、梯形积分法

z=trapz(x,y)

返回积分的近似值,其中x表示积分区间的离散化向量; y是与x同维数的向量,表示被积函数 。

原理如图:

即:取函数上若干点作为基准点,将图像切割成若干梯形后面积求解。

但是此种解法只能用来求近似解,求得的解误差较大。

如:

clear; 
x=-1:0.1:1;
y=exp(-x.^2);
trapz(x,y)

2、高精度积分法

z=integral (Fun,a,b)

  • fun 是被积函数,可以是函数句柄、匿名函数或内联函数。
  • a 和 b 是积分的下限和上限。
  • z 是积分的结果。

 此函数简单易用,不再过多解释。

今天就到这里明天我们继续学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2080507.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

初识Linux · 有关gcc/g++

目录 前言: 1 gcc和g 2 翻译过程 2.1 预处理 2.2 编译 2.3 汇编 2.4 链接 前言: 继上文介绍了vim 和 yum,相当于介绍了 文本编译器,我们可以利用vim写代码,那么写代码的我们了解了,现在应该了解编译…

R语言统计分析——如何选择最佳回归模型

参考资料:R语言实战【第2版】 尝试获取一个回归方程时,实际上你就面对着从众多可能的模型中做选择的问题。是不是所有的变量都要包括?还是去掉那个对预测贡献不显著的变量?是否需要添加多项式项和/或交互项来提高拟合度&#xff1…

.NET WPF 抖动动画

.NET WPF 抖动动画 Demo Code <!-- 水平抖动 --> <Button Content"Hello World"><Button.RenderTransform><TranslateTransform x:Name"translateTransform" /></Button.RenderTransform><Button.Triggers><Even…

SP: eric

靶机搭建 靶机下载地址 在Virtualbox中打开下载好的靶机&#xff0c;网络配置修改为桥接模式&#xff0c;启动靶机即可。 信息收集 主机发现 nmap 192.168.31.0/24 -Pn -T4 靶机IP&#xff1a;192.168.31.244 端口扫描 nmap 192.168.31.244 -A -p- -T4 根据端口扫描结果…

Linux驱动学习之内核poll阻塞

在linux系统编程课程中学习过多路IO复用&#xff0c;简单来说就三个函数select&#xff0c;poll&#xff0c;epoll。 对于select 此函数是跨平台的&#xff0c;可以在windows&#xff0c;Linux中使用。 对于poll与epoll 只能在linux平台下使用&#xff0c; epoll底层实现是一个…

ArcGIS应用指南:近邻分析(点匹配到最近线段上)

近邻分析通常用于确定一个要素集中的要素与另一个要素集中最近要素的距离。当涉及到点匹配到最近的线时&#xff0c;这种分析可以用来确定每个点到最近线段的距离及位置&#xff0c;也就是我们常说的点匹配到最近线上&#xff0c;可以参考官方文档&#xff1a;近邻分析 (Covera…

EmguCV学习笔记 VB.Net 6.S 特别示例

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…

深度学习基础(Datawhale X 李宏毅苹果书AI夏令营)

深度学习基础(Datawhale X 李宏毅苹果书AI夏令营) 3.1局部极小值和鞍点 3.1.1. 优化失败问题 在神经网络中&#xff0c;当优化到梯度为0的地方&#xff0c;梯度下降就无法继续更新参数了&#xff0c;训练也就停下来了&#xff0c;如图&#xff1a; 梯度为0的情况包含很多种情…

Anaconda3简介与安装步骤

目录 Anaconda3简介与功能 1.Anaconda3简介 2.主要功能和特点 3.使用场景 4.总结 Anaconda3安装 1.Anaconda3下载 1.1我的百度网盘 1.2官网下载 1.2.1访问官网 1.2.2输入邮箱 1.2.3登录你的邮箱下载&#xff08;你的噶&#xff09; 2.安装 2.1双击安装 2.2选择安…

分块矩阵的转置

证明 则 证明&#xff1a;令&#xff0c;有&#xff0c;对它做一个分块使得和后面的分块矩阵中的是同型矩阵&#xff0c;要证明&#xff08;任意的&#xff09;&#xff0c;需要证明1&#xff09;是一个的矩阵 2&#xff09;任意的 首先证明1&#xff09;我们先定义两个函…

HarmonyOS ArkUI工程框架解析

通过 HarmonyOS Developer 官网我们可以了解 ArkUI 是一套声明式开放框架&#xff0c;开发者可以基于 ArkTS 语法设计一套极简的 DSL 以及丰富的 UI 组件完成跨设备的界面开发。 那么 ArkUI 是如何实现这一套声明式开放框架的呢&#xff1f;本文将通过分析开源的 HarmonyOS 渲染…

记录devtmpfs:error mounting -2问题的解决

ext4文件系统制作有问题. 重新制作文件系统烧录 /dev文件夹丢失

软考攻略/超详细/系统集成项目管理工程师/基础知识分享04

第二章 信息技术发展 2.1信息技术及其发展 2.1.1 计算机软硬件&#xff08;了解&#xff09; 在许多情况下&#xff0c;计算机的某些功能既可以由硬件实现&#xff0c;也可以由软件来实现。 1、计算机硬件 计算机硬件主要分为&#xff1a;控制器、运算器、存储器、输入设备和…

开发中如何在运行/调试时将项目热部署到Tomcat

这里有一篇不错的博客&#xff0c;可以参考 http://t.csdnimg.cn/oWcgm 正常情况下&#xff0c;我们将web项目打包成war包后&#xff0c;需要放到tomcat的webapps路径下&#xff0c;然后启动tomcat&#xff0c;才能正常访问。但是这在开发阶段是极为不便的。因此可以使用两种方…

基于机器学习的工业制造缺陷分析预测系统

B站视频及代码下载&#xff1a;基于机器学习的工业制造缺陷分析预测系统-视频-代码 1. 项目简介 制造缺陷是工业生产过程中面临的重大挑战之一&#xff0c;对产品质量和生产效率产生直接影响。准确预测和分析制造缺陷的发生&#xff0c;可以帮助企业提高生产质量、降低成本&…

DNS 服务器的搭建(正向区域配置)

一、Windows DNS 正向区域配置 1.实验目标 2.拓扑结构 3.实验需求 4.配置要点 5.配置步骤 1.配置各主机 IP 地址及网关 2.DNS 服务器服务部署 3.验证实验 一、Windows DNS 正向区域配置 1.实验目标 掌握 DNS 的功能和基本操作 熟悉公网 DNS 架构 掌握 DNS …

豆瓣同城活动采集

可采集豆瓣同城活动&#xff0c;来辅助分析一个城市的文商旅体活跃繁荣程度。 示例数据&#xff1a; 活动网址&#xff1a;已屏蔽不显示 封图网址&#xff1a;已屏蔽不显示 标题&#xff1a;【百年老号-本地观众力捧】谦祥益相声茶馆-陆家嘴店 开始日期&#xff1a;2024-0…

tomcat在idea中 乱码(service ,catalina log)

我试了很多方法&#xff0c;把idea中的所有配置都改成了utf-8&#xff0c;&#xff08;包括修改vm配置&#xff0c;fileEndcoding&#xff0c;外部文件endcodeing ...等等&#xff09;都没有改好&#xff0c; 最后在修改了tomcat的配置文件&#xff0c;就好了 在tomcat的安装…

【C++ 第十六章】哈希

1. unordered系列关联式容器 在C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0c;在查询时效率可达到 &#xff0c;即最差情况下需要比较红黑树的高度次&#xff0c;当树中的节点非常多时&#xff0c;查询效率也不理想。最好 的查询是&#xff0c;进行…

Modern C++——函数参数类型的分类和使用

大纲 基本定义值类型左值引用非常量左值引用常量左值引用 右值引用总结 在C中&#xff0c;函数参数主要有两种方式&#xff1a;值类型和引用类型。其中引用类型又分为&#xff1a;左值引用和C11引入的右值引用。下面我们分别对其进行介绍。 基本定义 要弄清楚这些概念&#x…