2. 数列极限
2.4 收敛准则
2.4.1 单调有界定理
【例2.4.3】
x
1
=
2
,
x
n
+
1
=
3
+
2
x
n
,
n
=
1
,
2
,
3
,
.
.
.
x_{1}=\sqrt{2},x_{n+1}=\sqrt{3+2x_{n}},n=1,2,3,...
x1=2,xn+1=3+2xn,n=1,2,3,...,证明
{
x
n
}
\{x_{n}\}
{xn}收敛并求极限。
【证】
0
<
x
1
=
2
<
3
0<x_{1}=\sqrt{2}<3
0<x1=2<3,假设
0
<
x
n
<
3
0<x_{n}<3
0<xn<3,则
0
<
x
n
+
1
=
3
+
2
x
n
<
3
0<x_{n+1}=\sqrt{3+2x_{n}}<3
0<xn+1=3+2xn<3,由数学归纳法可知
0
<
x
n
<
3
0<x_{n}<3
0<xn<3对一切
n
n
n成立。
x
n
+
1
−
x
n
=
3
+
2
x
n
−
x
n
=
(
3
+
2
x
n
−
x
n
)
(
3
+
2
x
n
+
x
n
)
3
+
2
x
n
+
x
n
=
3
+
2
n
−
x
n
2
3
+
2
x
n
+
x
n
=
3
+
2
n
−
x
n
2
3
+
2
x
n
+
x
n
=
(
3
−
x
n
)
(
1
+
x
n
)
3
+
2
x
n
+
x
n
x_{n+1}-x_{n}=\sqrt{3+2x_{n}}-x_{n}=\frac{(\sqrt{3+2x_{n}}-x_{n})(\sqrt{3+2x_{n}}+x_{n})}{\sqrt{3+2x_{n}}+x_{n}}=\frac{3+2_{n}-x_{n}^{2}}{\sqrt{3+2x_{n}}+x_{n}}=\frac{3+2_{n}-x_{n}^{2}}{\sqrt{3+2x_{n}}+x_{n}}=\frac{(3-x_{n})(1+x_{n})}{\sqrt{3+2x_{n}}+x_{n}}
xn+1−xn=3+2xn−xn=3+2xn+xn(3+2xn−xn)(3+2xn+xn)=3+2xn+xn3+2n−xn2=3+2xn+xn3+2n−xn2=3+2xn+xn(3−xn)(1+xn)
由于
0
<
x
1
=
2
<
3
0<x_{1}=\sqrt{2}<3
0<x1=2<3,所以
(
3
−
x
n
)
(
1
+
x
n
)
>
0
(3-x_{n})(1+x_{n})>0
(3−xn)(1+xn)>0
即
x
n
+
1
−
x
n
>
0
x_{n+1}-x_{n}>0
xn+1−xn>0,故
x
n
+
1
>
x
n
x_{n+1}>x_{n}
xn+1>xn
所以
{
x
n
}
\{x_{n}\}
{xn}严格单调增加且有上界,所以
{
x
n
}
\{x_{n}\}
{xn}收敛,设
lim
n
→
∞
x
n
=
a
\lim\limits_{n\to\infty}x_{n}=a
n→∞limxn=a,对等式
x
n
+
1
=
3
+
2
x
n
x_{n+1}=\sqrt{3+2x_{n}}
xn+1=3+2xn左右两边取极限得
a
=
3
+
2
a
a=\sqrt{3+2a}
a=3+2a,
a
=
3
a=3
a=3或
a
=
−
1
a=-1
a=−1,又因为
0
<
x
n
<
3
0<x_{n}<3
0<xn<3,所以
a
=
−
1
a=-1
a=−1舍去,所以
lim
n
→
∞
x
n
=
3
\lim\limits_{n\to\infty}x_{n}=3
n→∞limxn=3
2.4.2 奇数子列和偶数子列的极限性质
【定理,习题】有
{
x
n
}
\{x_{n}\}
{xn},
lim
n
→
∞
x
2
n
=
lim
n
→
∞
x
2
n
+
1
=
a
⇔
lim
n
→
∞
x
n
=
a
\lim\limits_{n\to\infty}x_{2n}=\lim\limits_{n\to\infty}x_{2n+1}=a\Leftrightarrow\lim\limits_{n\to\infty}x_{n}=a
n→∞limx2n=n→∞limx2n+1=a⇔n→∞limxn=a
【证】先证必要性,由
lim
n
→
∞
x
2
n
=
lim
n
→
∞
x
2
n
+
1
=
a
\lim\limits_{n\to\infty}x_{2n}=\lim\limits_{n\to\infty}x_{2n+1}=a
n→∞limx2n=n→∞limx2n+1=a可知,
∀
ε
>
0
,
∃
N
1
,
∀
n
>
N
1
:
∣
x
2
n
−
a
∣
<
ε
\forall \varepsilon > 0, \exists N_{1}, \forall n>N_{1}:|x_{2n}-a|<\varepsilon
∀ε>0,∃N1,∀n>N1:∣x2n−a∣<ε
∃
N
2
,
∀
n
>
N
2
:
∣
x
2
n
+
1
−
a
∣
<
ε
\exists N_{2}, \forall n>N_{2}:|x_{2n+1}-a|<\varepsilon
∃N2,∀n>N2:∣x2n+1−a∣<ε
则要取得的
N
N
N,必须同时满足奇数项和偶数项,即取
N
=
max
{
2
N
1
,
2
N
2
+
1
}
,
∀
n
>
N
:
∣
x
n
−
a
∣
<
ε
N=\max\{2N_{1},2N_{2}+1\},\forall n>N:|x_{n}-a|<\varepsilon
N=max{2N1,2N2+1},∀n>N:∣xn−a∣<ε
即
lim
n
→
∞
x
n
=
a
\lim\limits_{n\to\infty}x_{n}=a
n→∞limxn=a
再证充分性,
由于
lim
n
→
∞
x
n
=
a
\lim\limits_{n\to\infty}x_{n}=a
n→∞limxn=a,则
∀
ε
>
0
,
∃
N
′
,
∀
n
>
N
′
:
∣
x
n
−
a
∣
<
ε
\forall \varepsilon >0,\exists N',\forall n>N':|x_{n}-a|<\varepsilon
∀ε>0,∃N′,∀n>N′:∣xn−a∣<ε,取
N
1
′
=
N
′
2
,
∀
n
>
N
1
′
N'_{1}=\frac{N'}{2},\forall n>N'_{1}
N1′=2N′,∀n>N1′即
2
n
>
N
′
:
∣
x
2
n
−
a
∣
<
ε
2n>N':|x_{2n}-a|<\varepsilon
2n>N′:∣x2n−a∣<ε,取
N
2
′
=
N
′
−
1
2
,
∀
n
>
N
2
′
N'_{2}=\frac{N'-1}{2},\forall n>N'_{2}
N2′=2N′−1,∀n>N2′即
2
n
+
1
>
N
′
:
∣
x
2
n
+
1
−
a
∣
<
ε
2n+1>N':|x_{2n+1}-a|<\varepsilon
2n+1>N′:∣x2n+1−a∣<ε,所以
lim
n
→
∞
x
2
n
=
lim
n
→
∞
x
2
n
+
1
=
a
\lim\limits_{n\to\infty}x_{2n}=\lim\limits_{n\to\infty}x_{2n+1}=a
n→∞limx2n=n→∞limx2n+1=a
【例2.4.4】【Fibonacci(斐波那契)数列】设一对刚出生的小兔要经过两个季度,即经过成长期后到达成熟期,才能再产小兔,且每对成熟的兔子每季度产一对小兔,在不考虑兔子死亡的前提下,求兔群逐年增长率的变化趋势。
【解】设开始只有1对刚出生的小兔,则在第一季与第二季,兔群只有1对兔子,在第三季,由于这对小兔成熟并产下1对小兔,兔群有两对兔子,在第四季,1对大兔又产下1对小兔,而原来1对小兔处于成长起,所以兔群有3对兔子,在第五季,又有1对小兔成熟并与原来的1对大兔各产下1对兔子,而原来1对小兔处于成长期,所兔群有5对兔子,以此类推,各季兔群情况可见下标:
季度 | 小兔对数 | 成长起兔对数 | 成熟期兔对数 | 兔对总和 |
---|---|---|---|---|
1 | 1 | 0 | 0 | a 1 = 1 a_{1}=1 a1=1 |
2 | 0 | 1 | 0 | a 2 = 1 a_{2}=1 a2=1 |
3 | 1 | 0 | 1 | a 3 = 2 a_{3}=2 a3=2 |
4 | 1 | 1 | 1 | a 4 = 3 a_{4}=3 a4=3 |
5 | 2 | 1 | 2 | a 5 = 5 a_{5}=5 a5=5 |
6 | 3 | 2 | 3 | a 6 = 8 a_{6}=8 a6=8 |
7 | 5 | 3 | 5 | a 7 = 13 a_{7}=13 a7=13 |
{
a
n
}
\{a_{n}\}
{an}表示第
n
n
n个季度兔对总数,在第
n
+
1
n+1
n+1季度,有多少对兔子产下小兔?
到第
n
+
1
n+1
n+1季度,能产小兔的兔对数为
a
n
−
1
a_{n-1}
an−1(隔了两个季度才成熟),而第
n
+
1
n+1
n+1季度兔对的总数应该等于第
n
n
n季度兔对数总数
a
n
a_{n}
an加上新产下的小兔对数
a
n
−
1
a_{n-1}
an−1,则
a
n
+
1
=
a
n
+
a
n
−
1
,
n
=
2
,
3
,
4
,
.
.
.
a_{n+1}=a_{n}+a_{n-1},n=2,3,4,...
an+1=an+an−1,n=2,3,4,...
令
b
n
=
a
n
+
1
a
n
b_{n}=\frac{a_{n+1}}{a_{n}}
bn=anan+1,则
b
n
−
1
=
a
n
+
1
−
a
n
a
n
b_{n}-1=\frac{a_{n+1}-a_{n}}{a_{n}}
bn−1=anan+1−an表示第
n
+
1
n+1
n+1季度对总数的增长率,我们希望随着
n
n
n的增加,增长率是一个固定的常数,我们来讨论
{
b
n
}
\{b_{n}\}
{bn}
b
n
=
a
n
+
1
a
n
=
a
n
+
a
n
−
1
a
n
=
1
+
a
n
−
1
a
n
=
1
+
1
b
n
−
1
b_{n}=\frac{a_{n+1}}{a_{n}}=\frac{a_{n}+a_{n-1}}{a_{n}}=1+\frac{a_{n-1}}{a_{n}}=1+\frac{1}{b_{n-1}}
bn=anan+1=anan+an−1=1+anan−1=1+bn−11
当
b
n
−
1
<
5
+
1
2
b_{n-1}<\frac{\sqrt{5}+1}{2}
bn−1<25+1(可以由差分方程解出来,超纲了),
b
n
>
1
+
1
5
+
1
2
=
5
+
1
+
2
5
+
1
=
(
5
+
3
)
(
5
−
1
)
)
(
5
+
1
)
(
5
−
1
)
=
5
−
5
+
3
5
−
3
4
=
2
+
2
5
4
=
5
+
1
2
>
b
n
−
1
b_{n}>1+\frac{1}{\frac{\sqrt{5}+1}{2}}=\frac{\sqrt{5}+1+2}{\sqrt{5}+1}=\frac{(\sqrt{5}+3)(\sqrt{5}-1))}{(\sqrt{5}+1)(\sqrt{5}-1)}=\frac{5-\sqrt{5}+3\sqrt{5}-3}{4}=\frac{2+2\sqrt{5}}{4}=\frac{\sqrt{5}+1}{2}>b_{n-1}
bn>1+25+11=5+15+1+2=(5+1)(5−1)(5+3)(5−1))=45−5+35−3=42+25=25+1>bn−1
同理,当
b
n
−
1
>
5
+
1
2
b_{n-1}>\frac{\sqrt{5}+1}{2}
bn−1>25+1,则
b
n
<
5
+
1
2
<
b
n
−
1
b_{n}<\frac{\sqrt{5}+1}{2}<b_{n-1}
bn<25+1<bn−1
说明
{
b
n
}
\{b_{n}\}
{bn}不单调,无法使用单调有界数列
把
{
b
n
}
\{b_{n}\}
{bn}分成两个子列,一个是偶数项构成的子列,一个是奇数项构成的子列。
经过探讨和观察(见注)
b
2
n
−
1
∈
(
0
,
5
+
1
2
)
,
b
2
n
∈
(
5
+
1
2
,
+
∞
)
b_{2n-1}\in(0,\frac{\sqrt{5}+1}{2}),b_{2n}\in(\frac{\sqrt{5}+1}{2},+\infty)
b2n−1∈(0,25+1),b2n∈(25+1,+∞)
b
2
k
+
1
−
b
2
k
−
1
=
1
+
1
1
+
1
b
2
k
−
1
−
b
2
k
−
1
=
1
+
b
2
k
−
1
1
+
b
2
k
−
1
−
b
2
k
−
1
=
1
+
b
2
k
−
1
+
b
2
k
−
1
−
b
2
k
−
1
(
1
+
b
2
k
−
1
)
1
+
b
2
k
−
1
=
1
+
2
b
2
k
−
1
−
b
2
k
−
1
−
b
2
k
−
1
2
1
+
b
2
k
−
1
=
1
+
b
2
k
−
1
−
b
2
k
−
1
2
1
+
b
2
k
−
1
=
(
5
−
1
2
+
b
2
k
−
1
)
(
5
+
1
2
−
b
2
k
−
1
)
1
+
b
2
k
−
1
>
0
(
b
2
n
−
1
∈
(
0
,
5
+
1
2
)
)
b_{2k+1}-b_{2k-1}=1+\frac{1}{1+\frac{1}{b_{2k-1}}}-b_{2k-1}=1+\frac{b_{2k-1}}{1+b_{2k-1}}-b_{2k-1}=\frac{1+b_{2k-1}+b_{2k-1}-b_{2k-1}(1+b_{2k-1})}{1+b_{2k-1}}=\frac{1+2b_{2k-1}-b_{2k-1}-b_{2k-1}^{2}}{1+b_{2k-1}}=\frac{1+b_{2k-1}-b_{2k-1}^{2}}{1+b_{2k-1}}=\frac{(\frac{\sqrt{5}-1}{2}+b_{2k-1})(\frac{\sqrt{5}+1}{2}-b_{2k-1})}{1+b_{2k-1}}>0(b_{2n-1}\in(0,\frac{\sqrt{5}+1}{2}))
b2k+1−b2k−1=1+1+b2k−111−b2k−1=1+1+b2k−1b2k−1−b2k−1=1+b2k−11+b2k−1+b2k−1−b2k−1(1+b2k−1)=1+b2k−11+2b2k−1−b2k−1−b2k−12=1+b2k−11+b2k−1−b2k−12=1+b2k−1(25−1+b2k−1)(25+1−b2k−1)>0(b2n−1∈(0,25+1))
即
b
2
k
+
1
>
b
2
k
−
1
b_{2k+1}>b_{2k-1}
b2k+1>b2k−1
则
{
b
2
k
−
1
}
\{b_{2k-1}\}
{b2k−1}严格单调增加有上界(
b
2
n
−
1
∈
(
0
,
5
+
1
2
)
b_{2n-1}\in(0,\frac{\sqrt{5}+1}{2})
b2n−1∈(0,25+1)),所以
{
b
2
k
−
1
}
\{b_{2k-1}\}
{b2k−1}收敛。
b
2
k
+
2
−
b
2
k
=
1
+
1
1
+
1
b
2
k
−
b
2
k
=
(
5
−
1
2
+
b
2
k
)
(
5
+
1
2
−
b
2
k
)
1
+
b
2
k
<
0
(
b
2
n
∈
(
5
+
1
2
,
+
∞
)
)
b_{2k+2}-b_{2k}=1+\frac{1}{1+\frac{1}{b_{2k}}}-b_{2k}=\frac{(\frac{\sqrt{5}-1}{2}+b_{2k})(\frac{\sqrt{5}+1}{2}-b_{2k})}{1+b_{2k}}<0(b_{2n}\in(\frac{\sqrt{5}+1}{2},+\infty))
b2k+2−b2k=1+1+b2k11−b2k=1+b2k(25−1+b2k)(25+1−b2k)<0(b2n∈(25+1,+∞))
所以
{
b
2
n
}
\{b_{2n}\}
{b2n}单调减少有下界,所以
{
b
2
n
}
\{b_{2n}\}
{b2n}收敛
设
lim
n
→
∞
b
2
n
−
1
=
a
,
lim
n
→
∞
b
2
n
=
b
\lim\limits_{n\to\infty}b_{2n-1}=a,\lim\limits_{n\to\infty}b_{2n}=b
n→∞limb2n−1=a,n→∞limb2n=b,则
b
2
n
+
1
=
1
+
1
1
+
1
b
2
n
−
1
=
1
+
2
b
2
n
−
1
1
+
b
2
n
−
1
b_{2n+1}=1+\frac{1}{1+\frac{1}{b_{2n-1}}}=\frac{1+2b_{2n-1}}{1+b_{2n-1}}
b2n+1=1+1+b2n−111=1+b2n−11+2b2n−1,对该等式左右两边同时取极限,则
a
=
1
+
2
a
1
+
a
a=\frac{1+2a}{1+a}
a=1+a1+2a,则
a
=
1
±
5
2
a=\frac{1\pm\sqrt{5}}{2}
a=21±5,由于
b
2
n
−
1
∈
(
0
,
5
+
1
2
)
b_{2n-1}\in(0,\frac{\sqrt{5}+1}{2})
b2n−1∈(0,25+1),所以
a
=
1
−
5
2
a=\frac{1-\sqrt{5}}{2}
a=21−5舍去,故
a
=
1
+
5
2
a=\frac{1+\sqrt{5}}{2}
a=21+5,即
lim
n
→
∞
b
2
n
−
1
=
1
+
5
2
\lim\limits_{n\to\infty}b_{2n-1}=\frac{1+\sqrt{5}}{2}
n→∞limb2n−1=21+5
同理
lim
n
→
∞
b
2
n
=
1
+
5
2
\lim\limits_{n\to\infty}b_{2n}=\frac{1+\sqrt{5}}{2}
n→∞limb2n=21+5
奇数项和偶数项两个子列极限都存在且相等,则
lim
n
→
∞
b
n
=
1
+
5
2
\lim\limits_{n\to\infty}b_{n}=\frac{1+\sqrt{5}}{2}
n→∞limbn=21+5
lim
n
→
∞
(
b
n
−
1
)
=
5
−
1
2
≈
0.618
\lim\limits_{n\to\infty}(b_{n}-1)=\frac{\sqrt{5}-1}{2}\approx 0.618
n→∞lim(bn−1)=25−1≈0.618(黄金分割常数)
【注】
5
+
1
2
\frac{\sqrt{5}+1}{2}
25+1是怎么推出来的,假设
{
b
n
}
\{b_{n}\}
{bn}收敛,然后对递推关系
b
n
=
1
+
1
b
n
−
1
b_{n}=1+\frac{1}{b_{n-1}}
bn=1+bn−11直接取极限(不论极限是否存在,先斩后奏),得出
5
+
1
2
\frac{\sqrt{5}+1}{2}
25+1,然后再观察奇数项和偶数项的范围,最后得出
b
2
n
−
1
∈
(
0
,
5
+
1
2
)
,
b
2
n
∈
(
5
+
1
2
,
+
∞
)
b_{2n-1}\in(0,\frac{\sqrt{5}+1}{2}),b_{2n}\in(\frac{\sqrt{5}+1}{2},+\infty)
b2n−1∈(0,25+1),b2n∈(25+1,+∞)
2.4.3 π \pi π与 e e e
-
π
\pi
π——圆周率:圆周长与直径之比。
假设有一个单位圆:
它的周长是 2 π 2\pi 2π(定义),它的面积是 π \pi π
曲线的长度:将曲线分割(分割点要很密)成若干小直线的长度和的极限值