在医学领域使用Python进行数据分析和建模时,掌握良好的编程逻辑和代码规范非常重要。这不仅可以提高代码的质量,还能让其他研究人员更容易理解和复现你的工作。下面是一些关于如何编写高质量Python代码的建议:
-
代码组织
模块化:将功能相关的代码放在同一个文件或模块中。
函数化:将重复使用的代码封装成函数,减少冗余。 -
变量命名
有意义的名称:使用描述性的变量名,避免使用单个字母作为变量名。
一致的风格:通常使用小写字母加下划线的方式(snake_case)。
示例: -
注释与文档
注释:在复杂的代码段上方添加注释,说明其作用。
文档字符串:为每个函数或类编写文档字符串,描述其用途、输入和输出。
示例: -
异常处理
捕获异常:使用try-except语句来处理可能发生的错误。
记录错误:通过日志记录错误信息,便于调试。
示例: -
测试
单元测试:为关键函数编写单元测试,确保它们按预期工作。
集成测试:测试不同组件之间的交互。
示例: -
代码风格
PEP 8:遵循PEP 8风格指南,保持代码整洁。
简洁性:尽量保持代码简洁,避免不必要的复杂性。
示例: -
使用工具
IDEs:使用集成开发环境(如PyCharm、VS Code等),这些工具通常包含代码格式化、语法检查等功能。
Linters:使用代码检查工具(如Flake8、Pylint等)来自动检测潜在的问题。 -
代码共享
版本控制:使用Git进行版本控制,方便多人协作。
代码仓库:将代码上传至GitHub、GitLab等平台,方便分享和复用。
示例:
通过遵循这些指导原则,你可以编写出更易于维护和扩展的代码,这对于医学研究尤为重要
随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。与此同时,以ChatGPT等为代表的大型生成式预训练模型即将在未来扮演着不可或缺的重要角色,是医学科研论文写作不可或缺的“利器”!医学人工智能不但可以处理大量的医学文献和数据,帮助医学领域人员更加高效地开展科研工作,提升科研质量和成果产出,还可以辅助医生对临床病例进行分析和诊断,增强医生的判断能力和效率。
次将对前沿的人工智能应用案例进行详细的解析,帮助学员快速实践ChatGPT加持下的临床科研应用方法,加快各单位有AI实战经验的高端人才培养。
具体事宜通知如下:
各科室临床医生、科研人员、研究生,如影像分析、数据科学等医工交叉领域,致力于利用数据分析和人工智能技术推动医药创新的医疗专业人员;医院管理者、医药公司管理层等,需要学握人工智能在提高运营效率、优化决策等方面的应用的医疗管理人员;医疗信息系统工程师、数据工程师等,需要学习如何利用人工智能技术开发创新的医疗应用的医疗信息技术人员。
内容
1,人工智能基础与医学应用概述
1、介绍AI基本概念、发展历程
2、人工智能在影像诊断中的应用案例现状与发展趋势
3、医学AI诊断应用案例
2,Python编程与Python医学图像处理(第一天上午)
一、核心知识点列表:
1,Python环境搭建 2,Python数据类型
3,Python流程控制 4,Python函数的应用
5,Python面向对象编程 6,Python文件读写和目录操作
7,Python异常处理 8,Python包和模块
9,Python核心的第三方模块
二、多模态医学影像数据预处理:
1,PyDicom库的安装和基本用法 2,DR影像的读取、解析、显示
3,CT影像的读取、解析、显示 4,PET影像的读取、解析、显示
3,神经网络和深度学习基础(第一天下午) 一、核心知识点列表:
1,神经网络结构 2,梯度下降算法 3,反向传播算法
4,用Python搭建单层神经网络进行训练
5,用Python搭建多层神经网络进行训练
6,卷积神经网络的基本概念 7 激活函数、标准化、正则化等
4,深度学习PyTorch框架(第二天上午)
一、核心知识点列表:
1,PyTorch的选型和安装 2,数据结构张量
3,数据读取和自定义 4,层的定义和使用
5,模型定义和测试 6,模型的保存和加载
7,损失函数 8,优化器
9,模型与训练可视化 10,完整深度学习案例
5,医学人工智能影像诊断算法
一、图像分类算法(诊断是否有病)(第二天下午)
1,图像分类算法概述
2,LeNet,AlexNet,VggNet等链式模型
3,GoogLeNet,ResNet等多分支模型
4,影像智能诊断项目实战【1】
二、目标检测算法(检测病变区域) (第二天下午)
1,目标检测算法概述;
2,YOLO系列目标检测算法
3,影像智能诊断项目实战【2】
三、图像分割算法(分割病变区域) (第三天上午)
1,图像分割算法概述
2,U-Net系列语义分割算法
3,DeepLab系列语义分割算法
4,YOLOv8实例分割算法 5,影像智能诊断项目实战【3】
6,ChatGPT在临床医学、科研、论文中应用(第三天下午)
1,自然语言处理基础知识
2,大模型概述和ChatGPT的基本原理
3,ChatGPT办公应用(医学文献梳理与知识提取,生成医学课题 PPT,助力SCI论文写作及润色)
4,ChatGPT用于辅助医疗数据分析(临床病例分析,代码自动编程,诊断建议与治疗方案生成)
辅助课程 1.根据学员感兴趣的领域,讲解人工智能、ChatGPT在医学领域的应用
2.建立微信答疑群(课后长期存在)