YOLOv9改进策略【注意力机制篇】| 引入SimAM注意力模块(一个简单的,无参数的卷积神经网络注意模块)

news2025/1/21 6:33:10

一、本文介绍

本文记录的是基于SimAM注意力模块的YOLOv9目标检测方法研究SimAM注意力模块通过优化能量函数来获得每个神经元的三维权重,而无需引入额外的参数或增加计算复杂度。若是有轻量化需求的小伙伴,无参的注意力模块也许是一个不错的选择。

文章目录

  • 一、本文介绍
  • 二、SimAM注意力原理
    • 2.1、原理
    • 2.2、优势
  • 三、SimAM的实现代码
  • 四、添加步骤
    • 4.1 修改common.py
      • 4.1.1 基础模块1
      • 4.1.2 创新模块2⭐
    • 4.2 修改yolo.py
  • 五、yaml模型文件
    • 5.1 模型改进版本一
    • 5.2 模型改进版本二⭐
  • 六、成功运行结果


二、SimAM注意力原理

SimAM(A Simple, Parameter-Free Attention Module for Convolutional Neural Networks)是一种简单且无参数的注意力模块,主要用于卷积神经网络。

2.1、原理

  1. 基于神经科学理论定义能量函数
    • 在视觉神经科学中,最具信息量的神经元通常是那些与周围神经元具有不同激发模式的神经元。并且,一个活跃的神经元可能会抑制周围神经元的活动,这种现象被称为空间抑制
    • 基于此,SimAM为每个神经元定义了如下能量函数 e t ( w t , b t , y , x i ) = ( y t − t ^ ) 2 + 1 M − 1 ∑ i = 1 M − 1 ( y o − x ^ i ) 2 e_{t}\left(w_{t}, b_{t}, y, x_{i}\right)=\left(y_{t}-\hat{t}\right)^{2}+\frac{1}{M - 1} \sum_{i = 1}^{M - 1}\left(y_{o}-\hat{x}_{i}\right)^{2} et(wt,bt,y,xi)=(ytt^)2+M11i=1M1(yox^i)2,其中 t ^ = w t t + b t \hat{t}=w_{t}t + b_{t} t^=wtt+bt x ^ i = w t x i + b t \hat{x}_{i}=w_{t}x_{i}+b_{t} x^i=wtxi+bt是线性变换, t t t x i x_{i} xi是输入特征 X ∈ R C × H × W X\in R^{C\times H\times W} XRC×H×W单个通道中的目标神经元和其他神经元。 i i i是空间维度上的索引, M = H × W M = H\times W M=H×W是该通道上的神经元数量。 w t w_{t} wt b t b_{t} bt是线性变换的权重和偏置。
    • 为了简化计算,采用二进制标签(即 1 和 -1)用于 y t y_{t} yt y o y_{o} yo,并添加一个正则项,最终的能量函数为:
      e t ( w t , b t , y , x i ) = 1 M − 1 ∑ i = 1 M − 1 ( − 1 − ( w t x i + b t ) ) 2 + ( 1 − ( w t t + b t ) ) 2 + λ w t 2 e_{t}\left(w_{t}, b_{t}, y, x_{i}\right)=\frac{1}{M - 1} \sum_{i = 1}^{M - 1}\left(-1-\left(w_{t}x_{i}+b_{t}\right)\right)^{2}+\left(1-\left(w_{t}t+b_{t}\right)\right)^{2}+\lambda w_{t}^{2} et(wt,bt,y,xi)=M11i=1M1(1(wtxi+bt))2+(1(wtt+bt))2+λwt2
  2. 推导能量函数的闭式解
    • 通过对上述能量函数求解,得到关于 w t w_{t} wt b t b_{t} bt的闭式解为: w t = − 2 ( t − μ t ) ( t − μ t ) 2 + 2 σ t 2 + 2 λ w_{t}=-\frac{2\left(t-\mu_{t}\right)}{\left(t-\mu_{t}\right)^{2}+2\sigma_{t}^{2}+2\lambda} wt=(tμt)2+2σt2+2λ2(tμt) b t = − 1 2 ( t + μ t ) w t b_{t}=-\frac{1}{2}\left(t+\mu_{t}\right)w_{t} bt=21(t+μt)wt。其中 μ t = 1 M − 1 ∑ i x i \mu_{t}=\frac{1}{M - 1}\sum_{i}x_{i} μt=M11ixi σ t = 1 M − 1 ∑ i ( x i − μ t ) 2 \sigma_{t}=\sqrt{\frac{1}{M - 1}\sum_{i}\left(x_{i}-\mu_{t}\right)^{2}} σt=M11i(xiμt)2 是该通道上除(t)以外所有神经元的均值和方差。
    • 由于上述解是在单个通道上得到的,假设单个通道中的所有像素遵循相同的分布,那么可以对所有神经元计算一次均值和方差,并在该通道上重复使用,得到最小能量计算公式: e t ∗ = 4 ( σ ^ 2 + λ ) ( t − μ ^ ) 2 + 2 σ ^ 2 + 2 λ e_{t}^{*}=\frac{4\left(\hat{\sigma}^{2}+\lambda\right)}{(t-\hat{\mu})^{2}+2\hat{\sigma}^{2}+2\lambda} et=(tμ^)2+2σ^2+2λ4(σ^2+λ),其中 μ ^ = 1 M ∑ i x i \hat{\mu}=\frac{1}{M}\sum_{i}x_{i} μ^=M1ixi σ ^ 2 = 1 M ∑ i ( x i − μ ^ ) 2 \hat{\sigma}^{2}=\frac{1}{M}\sum_{i}\left(x_{i}-\hat{\mu}\right)^{2} σ^2=M1i(xiμ^)2
    • 能量 e t ∗ e_{t}^{*} et越低,神经元 t t t与周围神经元的区别就越大,在视觉处理中就越重要。因此,每个神经元的重要性可以通过 1 / e t ∗ 1/e_{t}^{*} 1/et获得。
  3. 注意力模块的特征细化
    • 根据哺乳动物大脑中的注意力调制通常表现为对神经元响应的增益效应,SimAM使用缩放运算符而不是加法来进行特征细化。整个模块的细化阶段公式为: X ~ = sigmoid ( 1 E ) ⊙ X \tilde{X}=\text{sigmoid}\left(\frac{1}{E}\right)\odot X X~=sigmoid(E1)X,其 E E E是所有通道和空间维度上的 e t ∗ e_{t}^{*} et的集合, sigmoid \text{sigmoid} sigmoid函数用于限制 E E E中的值过大,它是一个单调函数,不会影响每个神经元的相对重要性。

在这里插入图片描述

2.2、优势

  1. 全三维注意力权重
    • 与现有的注意力模块不同,SimAM可以直接推断出全三维注意力权重,同时考虑空间和通道维度,而不是只沿通道或空间维度生成一维或二维权重。这使得网络能够学习到更具判别性的特征,更好地捕捉图像中的有价值线索,与图像标签更加一致。
  2. 基于神经科学理论,可解释性强
    • SimAM基于神经科学理论设计,其实现注意力的方式是估计单个神经元的重要性,这种方法来源于对哺乳动物大脑中视觉处理机制的理解,具有较强的可解释性。相比其他大多基于启发式方法计算注意力权重的模块,SimAM更加科学合理。
  3. 参数自由
    • SimAM通过推导能量函数的闭式解,实现了无需向原始网络添加额外参数的特性。这在实际应用中具有很大的优势,轻量化,不会增加模型的复杂度和计算负担,同时能够有效地提升各种卷积神经网络在不同视觉任务中的表现。

论文:https://proceedings.mlr.press/v139/yang21o/yang21o.pdf
源码:https://github.com/ZjjConan/SimAM

三、SimAM的实现代码

SimAM模块的实现代码如下:

class SimAM(torch.nn.Module):
    def __init__(self, channels = None,out_channels = None, e_lambda = 1e-4):
        super(SimAM, self).__init__()
        self.activaton = nn.Sigmoid()
        self.e_lambda = e_lambda

    def __repr__(self):
        s = self.__class__.__name__ + '('
        s += ('lambda=%f)' % self.e_lambda)
        return s

    @staticmethod
    def get_module_name():
        return "simam"

    def forward(self, x):
        b, c, h, w = x.size()
        n = w * h - 1
        x_minus_mu_square = (x - x.mean(dim=[2,3], keepdim=True)).pow(2)
        y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2,3], keepdim=True) / n + self.e_lambda)) + 0.5

        return x * self.activaton(y) 


四、添加步骤

4.1 修改common.py

此处需要修改的文件是models/common.py

common.py中定义了网络结构的通用模块,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。

4.1.1 基础模块1

模块改进方法1️⃣:直接加入SimAM模块
SimAM模块添加后如下:

在这里插入图片描述
注意❗:在4.2小节中的yolo.py文件中需要声明的模块名称为:SimAM

4.1.2 创新模块2⭐

模块改进方法2️⃣:基于SimAM模块RepNCSPELAN4

相较方法一中的直接插入注意力模块,利用注意力模块对卷积等其他模块进行改进,其新颖程度会更高一些,训练精度可能会表现的更高。

第二种改进方法是对YOLOv9中的RepNCSPELAN4模块进行改进。RepNCSPELAN4模块的创新思想是将CSPELAN相结合。CSP可以有效地分割梯度流,减少计算量的同时保持准确性。ELAN则通过灵活的层聚合方式,增强网络的学习能力。此处的改进方法是将SimAM注意力模块替换RepNCSPELAN4中的卷积模块,目的是将分流融合后的特征信息再一次利用注意力加权,而使用SimAM注意力模块会进一步减少模型参数而不破坏CSPNet的中心思想。

改进代码如下:

class SimAMRepNCSPELAN4(nn.Module):
    # csp-elan
    def __init__(self, c1, c2, c3, c4, c5=1):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = c3//2
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), SimAM(c4, c4))
        self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), SimAM(c4, c4))
        self.cv4 = Conv(c3+(2*c4), c2, 1, 1)

    def forward(self, x):
        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))

    def forward_split(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))

在这里插入图片描述

注意❗:在4.2小节中的yolo.py文件中需要声明的模块名称为:SimAMRepNCSPELAN4

4.2 修改yolo.py

此处需要修改的文件是models/yolo.py

yolo.py用于函数调用,我们只需要将common.py中定义的新的模块名添加到parse_model函数下即可。

SimAM模块以及SimAMRepNCSPELAN4模块添加后如下:

在这里插入图片描述


五、yaml模型文件

5.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以models/detect/yolov9-c.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-SimAM.yaml

yolov9-c.yaml中的内容复制到yolov9-c-SimAM.yaml文件下,修改nc数量等于自己数据中目标的数量。
在骨干网络的最后一层添加SimAM模块,即下方代码中的第45行,只需要填入一个参数,通道数,和前一层通道数一致还需要注意的是,由于PAN+FPN的颈部模型结构存在,层之间的匹配也要记得修改,维度要匹配上

📌 放在此处的目的是让网络能够学习到更深层的语义信息,因为此时特征图尺寸小,包含全局信息。若是希望网络能够更加关注局部信息,可尝试将注意力模块添加到网络的浅层。

📌 当然由于其即插即用的特性,加在哪里都是可以的,但是想要真的有效,还需要根据模型结构,数据集特性等多方面因素,多做实验进行验证。

# YOLOv9

# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3

   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5

   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7

   # avg-conv down
   [-1, 1, ADown, [512]],  # 8-P5/32

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9

   [-1, 1, SimAM, [512]],  # 10  # 注意力添加在此处
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)

   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 26-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 27-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28

   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 29-P3/8
   [[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 30  

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 32-P4/16
   [[25, 26, -1], 1, CBFuse, [[1, 1]]], # 33 

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 35-P5/32
   [[26, -1], 1, CBFuse, [[2]]], # 36

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   
   
   
   # detection head

   # detect
   [[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

5.2 模型改进版本二⭐

此处同样以models/detect/yolov9-c.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-SimAMRepNCSPELAN4.yaml

yolov9-c.yaml中的内容复制到yolov9-c-SimAMRepNCSPELAN4.yaml文件下,修改nc数量等于自己数据中目标的数量。

📌 模型的修改方法是将骨干网络中的所有RepNCSPELAN4模块替换成SimAMRepNCSPELAN4模块使模型可以更早地聚焦于重要信息,避免在初始阶段引入过多无关或冗余特征,并且不同层之间的特征传递更加协调和有针对性,进一步加强模型性能。

# YOLOv9

# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4

   # elan-1 block
   [-1, 1, SimAMRepNCSPELAN4, [256, 128, 64, 1]],  # 3  修改此处

   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8

   # elan-2 block
   [-1, 1, SimAMRepNCSPELAN4, [512, 256, 128, 1]],  # 5  修改此处

   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16

   # elan-2 block
   [-1, 1, SimAMRepNCSPELAN4, [512, 512, 256, 1]],  # 7  修改此处

   # avg-conv down
   [-1, 1, ADown, [512]],  # 8-P5/32

   # elan-2 block
   [-1, 1, SimAMRepNCSPELAN4, [512, 512, 256, 1]],  # 9  修改此处
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)

   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 26-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 27-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28

   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 29-P3/8
   [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 32-P4/16
   [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 35-P5/32
   [[25, -1], 1, CBFuse, [[2]]], # 36

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   
   
   
   # detection head

   # detect
   [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]


六、成功运行结果

分别打印网络模型可以看到SimAM模块SimAMRepNCSPELAN4已经加入到模型中,并可以进行训练了。

yolov9-c-SimAM

                 from  n    params  module                                  arguments                     
  0                -1  1         0  models.common.Silence                   []                            
  1                -1  1      1856  models.common.Conv                      [3, 64, 3, 2]                 
  2                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  3                -1  1    212864  models.common.RepNCSPELAN4              [128, 256, 128, 64, 1]        
  4                -1  1    164352  models.common.ADown                     [256, 256]                    
  5                -1  1    847616  models.common.RepNCSPELAN4              [256, 512, 256, 128, 1]       
  6                -1  1    656384  models.common.ADown                     [512, 512]                    
  7                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       
  8                -1  1    656384  models.common.ADown                     [512, 512]                    
  9                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       
 10                -1  1         0  models.common.SimAM                     [512, 512]                    
 11                -1  1    656896  models.common.SPPELAN                   [512, 512, 256]               
 12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 13           [-1, 7]  1         0  models.common.Concat                    [1]                           
 14                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 5]  1         0  models.common.Concat                    [1]                           
 17                -1  1    912640  models.common.RepNCSPELAN4              [1024, 256, 256, 128, 1]      
 18                -1  1    164352  models.common.ADown                     [256, 256]                    
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  1   2988544  models.common.RepNCSPELAN4              [768, 512, 512, 256, 1]       
 21                -1  1    656384  models.common.ADown                     [512, 512]                    
 22          [-1, 11]  1         0  models.common.Concat                    [1]                           
 23                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      
 24                 5  1    131328  models.common.CBLinear                  [512, [256]]                  
 25                 7  1    393984  models.common.CBLinear                  [512, [256, 512]]             
 26                 9  1    656640  models.common.CBLinear                  [512, [256, 512, 512]]        
 27                 0  1      1856  models.common.Conv                      [3, 64, 3, 2]                 
 28                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
 29                -1  1    212864  models.common.RepNCSPELAN4              [128, 256, 128, 64, 1]        
 30                -1  1    164352  models.common.ADown                     [256, 256]                    
 31  [24, 25, 26, -1]  1         0  models.common.CBFuse                    [[0, 0, 0]]                   
 32                -1  1    847616  models.common.RepNCSPELAN4              [256, 512, 256, 128, 1]       
 33                -1  1    656384  models.common.ADown                     [512, 512]                    
 34      [25, 26, -1]  1         0  models.common.CBFuse                    [[1, 1]]                      
 35                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       
 36                -1  1    656384  models.common.ADown                     [512, 512]                    
 37          [26, -1]  1         0  models.common.CBFuse                    [[2]]                         
 38                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       
 39[32, 35, 38, 17, 20, 23]  1  21542822  DualDDetect                             [1, [512, 512, 512, 256, 512, 512]]
yolov9-c-SimAM summary: 964 layers, 50999590 parameters, 50999558 gradients, 238.9 GFLOPs

yolov9-c-SimAMRepNCSPELAN4

从参数量和计算量可以看出,相较于yolov9-c-SimAM和原模型,均有减少,更加轻量。

                 from  n    params  module                                  arguments                     
  0                -1  1         0  models.common.Silence                   []                            
  1                -1  1      1856  models.common.Conv                      [3, 64, 3, 2]                 
  2                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  3                -1  1    138880  models.common.SimAMRepNCSPELAN4         [128, 256, 128, 64, 1]        
  4                -1  1    164352  models.common.ADown                     [256, 256]                    
  5                -1  1    552192  models.common.SimAMRepNCSPELAN4         [256, 512, 256, 128, 1]       
  6                -1  1    656384  models.common.ADown                     [512, 512]                    
  7                -1  1   1676800  models.common.SimAMRepNCSPELAN4         [512, 512, 512, 256, 1]       
  8                -1  1    656384  models.common.ADown                     [512, 512]                    
  9                -1  1   1676800  models.common.SimAMRepNCSPELAN4         [512, 512, 512, 256, 1]       
 10                -1  1    656896  models.common.SPPELAN                   [512, 512, 256]               
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 7]  1         0  models.common.Concat                    [1]                           
 13                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      
 14                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 15           [-1, 5]  1         0  models.common.Concat                    [1]                           
 16                -1  1    912640  models.common.RepNCSPELAN4              [1024, 256, 256, 128, 1]      
 17                -1  1    164352  models.common.ADown                     [256, 256]                    
 18          [-1, 13]  1         0  models.common.Concat                    [1]                           
 19                -1  1   2988544  models.common.RepNCSPELAN4              [768, 512, 512, 256, 1]       
 20                -1  1    656384  models.common.ADown                     [512, 512]                    
 21          [-1, 10]  1         0  models.common.Concat                    [1]                           
 22                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      
 23                 5  1    131328  models.common.CBLinear                  [512, [256]]                  
 24                 7  1    393984  models.common.CBLinear                  [512, [256, 512]]             
 25                 9  1    656640  models.common.CBLinear                  [512, [256, 512, 512]]        
 26                 0  1      1856  models.common.Conv                      [3, 64, 3, 2]                 
 27                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
 28                -1  1    212864  models.common.RepNCSPELAN4              [128, 256, 128, 64, 1]        
 29                -1  1    164352  models.common.ADown                     [256, 256]                    
 30  [23, 24, 25, -1]  1         0  models.common.CBFuse                    [[0, 0, 0]]                   
 31                -1  1    847616  models.common.RepNCSPELAN4              [256, 512, 256, 128, 1]       
 32                -1  1    656384  models.common.ADown                     [512, 512]                    
 33      [24, 25, -1]  1         0  models.common.CBFuse                    [[1, 1]]                      
 34                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       
 35                -1  1    656384  models.common.ADown                     [512, 512]                    
 36          [25, -1]  1         0  models.common.CBFuse                    [[2]]                         
 37                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       
 38[31, 34, 37, 16, 19, 22]  1  21542822  DualDDetect                             [1, [512, 512, 512, 256, 512, 512]]
yolov9-c-SimAMRepNCSPELAN4 summary: 954 layers, 48268838 parameters, 48268806 gradients, 226.5 GFLOPs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2066906.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MATLAB 手动实现体素中心点采样抽稀法(72)

. 往期文章回顾 MATLAB 自定义体素中心点采样抽稀法(72) 一、算法简介二、算法实现1.代码2.效果总结一、算法简介 下面是手动实现的体素采样法,用于对点云数据抽稀,减少点云数量,具体的方法就是建立空间三维体素,每个内部存在点云的体素,选择体素中心点保留,最终得到…

使用kafka改造分布式事务

文章目录 1、kafka确保消息不丢失?1.1、生产者端确保消息不丢失1.2、kafka服务端确保消息不丢失1.3、消费者确保正确无误的消费 2、生产者发送消息 KafkaService3、UserInfoServiceImpl -> login()4、service-account - > AccountListener.java 1、kafka确保消…

电磁炮设计

视频链接: 电磁炮视频 项目简介 这个项目电磁炮主要是,测试电磁炮原理部分的简易制作,对原理有初步认识,升压电路采用的是boost电路,IGBT作为开关管,电解电容作为储能元件。 项目功能 本设计是基于STM32F4…

Chapter 02 Vue指令(上)

欢迎大家订阅【Vue2Vue3】入门到实践 专栏,开启你的 Vue 学习之旅! 文章目录 前言一、v-text指令二、v-html指令三、v-show指令四、v-if指令五、v-else指令六、v-else-if指令 前言 在 Vue.js 中,指令是带有 v- 前缀的特殊属性,不…

【大数据】数据仓库的定义、数据模型及其建设与设计

1. 数据仓库 1.1 定义 数据仓库不是数据的简单堆积,而是从大量的事务型数据库中抽取数据,并将其清理、转换为新的存储格式,即为决策目标把数据聚合在一种特殊的格式中。公认的数据仓库之父 W.H. Inmon 将其定义为:“数据仓库是支持管理决策…

【秋招笔试】8.19蔚来秋招-三语言题解

🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 编程一对一辅导 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 🍒 本专栏已收…

git submodule

文章目录 环境准备用法添加子模块添加b添加c提交总结 其它用户获取子模块其它总结 更新子模块内容方式1:独立更新其它 方式2:在主模块嵌套下更新总结 总结参考 写的有点乱,凑合理解一下吧。另外常用命令总结一下: git submodule …

开发者空间实践指导:基于华为云3大PaaS主流服务轻松实现文字转换语音

案例简介 开发者将在云主机中,基于CodeArts API设计语音合成接口,基于API Explorer调试接口,并利用CodeArts IDE实现数据流转换为音频。在此过程中,开发者可体验API设计、开发、调试等全生命周期,对华为云产品API体系…

vue文件打包后怎么运行

找到打包后的文件 并在此处打开cmd控制台 输入 npm run serve 按住" ctrl " 再点击网址及可访问。 ------------------------------

代码行数计数器

做了个记录代码函数的小程序,后缀名记得设置为.pyw,如果你装了python的话可以直接拿来用,免费自取。 功能说明: 1.记录总行数、当前行数、目标行数三个值 2.具有进度条功能 3.行数的多少能激发不同的反馈,如great&am…

基于分数Talbot效应的阵列光学涡旋产生matlab模拟与仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于分数Talbot效应的阵列光学涡旋产生matlab模拟与仿真,分别测试正方形,旋转正方形以及六边形三种阵列形状下的光学涡旋。 2.测试软件版…

(论文研读)解决transform训练的不稳定性问题:SAMformer(时序预测)

论文链接:https://arxiv.org/abs/2402.10198 作者团队:华为诺亚方舟实验室(华为巴黎研究中心),Laboratory of Informatics Paris Descartes (LIPADE) 巴黎笛卡尔大学(第五大学)信息学实验室 文…

【笔记篇】Davinci Configurator SomeIpXf模块

目录 1 简介1.1 架构概览2 功能描述2.1 特性2.2 初始化2.3 状态机2.4 主函数2.5 故障处理3 集成4 API描述5 配置1 简介 本文主要描述了AUTOSAR SomeIpXf模块的功能。 SomeIpXf主要用途是对数据进行SOME/IP格式的序列化和反序列化。 1.1 架构概览 SomeIpXf在AUTOSAR软件架构…

环绕音效是什么意思,电脑环绕音效怎么开

Boom 3D是一款专业的音效增强软件,它拥有先进的音效处理技术和丰富的音效设置选项,可以为用户打造出高度定制化的音频体验,Boom 3D还拥有简洁直观的界面,操作简单易懂,即使是音频技术的新手也能轻松上手。本篇文章就将…

Mybatis实现员工管理系统

文章目录 1.案例需求2.编程思路3.案例源码4.小结 1.案例需求 在上次做的父子模块的maven以及Ajax实现人工管理系统的基础上使用Mybatis实现员工管理系统的增删改查,具体运行效果如下: 2.编程思路 Mybatis框架的一般执行流程: 创建MyBati…

基于改进字典的大数据多维分析加速实践

一、背景 OLAP场景是大数据应用中非常重要的一环,能够快速、灵活地满足业务各种分析需求,提供复杂的分析操作和决策支持。B站主流湖仓使用Iceberg存储,通过建表优化可以实现常规千万级的指标统计秒级查询,这样就能快速搭建可视化报…

WRF输出结果的可视化展示与分析:以风速为例

1.前言 天气研究与预报 (WRF) 模型是一种功能强大的数值天气预报系统,用于模拟各种尺度的大气现象。WRF 生成大量输出数据,可为气象和气候研究、天气预报和环境管理提供宝贵信息。 WRF 输出数据通常存储在 netCDF 文件中,其中包含具有不同单位…

AI生成PPT怎么用?5款AI PPT工具助你轻松制作演示文稿

当你站在山西应县木塔之下,仰望这座千年古塔的雄伟与震撼,心中不禁涌起一股对历史与建筑艺术的敬畏之情。 想象一下,如果将这份震撼与敬仰融入到你的演示文稿中,那将是多么引人入胜的体验。而这一切,只需借助AI生成PP…

Kubernetes 运维工程师必备:K8s 基础面试题精编(三)

Kubernetes 运维工程师必备:K8s 基础面试题精编(三) 1. 在Kubernetes集群中如何查看Pod的日志?2. 如何将一个已经部署的应用程序从一个命名空间迁移到另一个命名空间?3. 如何更新Kubernetes集群中的应用程序镜像版本?4. 如何通过Kubernetes进行自动扩容?5. 如何手动扩容…

震惊!!大模型玩转JS逆向

不知道大家有没有被JS代码混淆折磨过,我之前搞爬虫的时候,也经常被OB代码混淆搞到心态崩溃,但是自从接触了大模型,腰不疼了,腿不酸了,OB代码直接交给大模型,简直不要太爽 这是一段经过OB混淆之…