文章目录
- 一,179-商城业务-检索服务-SearchRequest构建-检索
- 1,Controller接口
- 二,180-商城业务-检索服务-SearchRequest构建-排序、分页、高亮&测试
- 三,181-商城业务-检索服务-SearchRequest构建-聚合
- 四,182-商城业务-检索服务-SearchResponse分析&封装
- 五,接口代码
- 六,183-商城业务-检索服务-验证结果封装正确性
这一节主要是将上一节的DSL语句转换为使用Elasticsearch的Java客户端构建查询。
当从首页跳转到搜索界面,后端会根据搜索条件封装请求,向ES发出检索请求,查询到数据后,封装为之前设计好的数据结构,然后交给Thyleaf编译整合到页面模板中。
一,179-商城业务-检索服务-SearchRequest构建-检索
1,Controller接口
@GetMapping(value = "/list.html")
public String listPage(SearchParam searchParam, Model model) {
SearchResult search = mallSearchService.search(searchParam);
model.addAttribute("result", search);
return "list";
}
把查询结果放入Model
,是为了Thymeleaf
将数据整合到页面模板中。
二,180-商城业务-检索服务-SearchRequest构建-排序、分页、高亮&测试
三,181-商城业务-检索服务-SearchRequest构建-聚合
四,182-商城业务-检索服务-SearchResponse分析&封装
这四节的代码量比较大,难度笔记高,要求对DSL和Elasticsearch的Client API比较熟悉。这部分内容可以借助AI生成,比如将DSL交给ChatGPT,让它生成Java代码,然后在自测的过程中微调。
五,接口代码
@Slf4j
@Service
public class MallSearchServiceImpl implements MallSearchService {
@Autowired
private RestHighLevelClient esRestClient;
@Override
public SearchResult search(SearchParam param) {
//动态构建出查询需要的DSL语句
SearchResult result = null;
//1、准备检索请求
SearchRequest searchRequest = buildSearchRequest(param);
try {
//2、执行检索请求
SearchResponse response = esRestClient.search(searchRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
//3、分析响应数据,封装成我们需要的格式
result = buildSearchResult(response,param);
} catch (IOException e) {
e.printStackTrace();
}
return result;
}
/**
* 构建结果数据
* 模糊匹配,过滤(按照属性、分类、品牌,价格区间,库存),完成排序、分页、高亮,聚合分析功能
* @param response
* @return
*/
private SearchResult buildSearchResult(SearchResponse response,SearchParam param) {
SearchResult result = new SearchResult();
//1、返回的所有查询到的商品
SearchHits hits = response.getHits();
List<SkuEsModel> esModels = new ArrayList<>();
//遍历所有商品信息
if (hits.getHits() != null && hits.getHits().length > 0) {
for (SearchHit hit : hits.getHits()) {
String sourceAsString = hit.getSourceAsString();
SkuEsModel esModel = JSON.parseObject(sourceAsString, SkuEsModel.class);
//判断是否按关键字检索,若是就显示高亮,否则不显示
if (!StringUtils.isEmpty(param.getKeyword())) {
//拿到高亮信息显示标题
HighlightField skuTitle = hit.getHighlightFields().get("skuTitle");
String skuTitleValue = skuTitle.getFragments()[0].string();
esModel.setSkuTitle(skuTitleValue);
}
esModels.add(esModel);
}
}
result.setProduct(esModels);
//2、当前商品涉及到的所有属性信息
List<SearchResult.AttrVo> attrVos = new ArrayList<>();
//获取属性信息的聚合
ParsedNested attrsAgg = response.getAggregations().get("attr_agg");
ParsedLongTerms attrIdAgg = attrsAgg.getAggregations().get("attr_id_agg");
for (Terms.Bucket bucket : attrIdAgg.getBuckets()) {
SearchResult.AttrVo attrVo = new SearchResult.AttrVo();
//1、得到属性的id
long attrId = bucket.getKeyAsNumber().longValue();
attrVo.setAttrId(attrId);
//2、得到属性的名字
ParsedStringTerms attrNameAgg = bucket.getAggregations().get("attr_name_agg");
String attrName = attrNameAgg.getBuckets().get(0).getKeyAsString();
attrVo.setAttrName(attrName);
//3、得到属性的所有值
ParsedStringTerms attrValueAgg = bucket.getAggregations().get("attr_value_agg");
List<String> attrValues = attrValueAgg.getBuckets().stream().map(item -> item.getKeyAsString()).collect(Collectors.toList());
attrVo.setAttrValue(attrValues);
attrVos.add(attrVo);
}
result.setAttrs(attrVos);
//3、当前商品涉及到的所有品牌信息
List<SearchResult.BrandVo> brandVos = new ArrayList<>();
//获取到品牌的聚合
ParsedLongTerms brandAgg = response.getAggregations().get("brand_agg");
for (Terms.Bucket bucket : brandAgg.getBuckets()) {
SearchResult.BrandVo brandVo = new SearchResult.BrandVo();
//1、得到品牌的id
long brandId = bucket.getKeyAsNumber().longValue();
brandVo.setBrandId(brandId);
//2、得到品牌的名字
ParsedStringTerms brandNameAgg = bucket.getAggregations().get("brand_name_agg");
String brandName = brandNameAgg.getBuckets().get(0).getKeyAsString();
brandVo.setBrandName(brandName);
//3、得到品牌的图片
ParsedStringTerms brandImgAgg = bucket.getAggregations().get("brand_img_agg");
String brandImg = brandImgAgg.getBuckets().get(0).getKeyAsString();
brandVo.setBrandImg(brandImg);
brandVos.add(brandVo);
}
result.setBrands(brandVos);
//4、当前商品涉及到的所有分类信息
//获取到分类的聚合
List<SearchResult.CatalogVo> catalogVos = new ArrayList<>();
ParsedLongTerms catalogAgg = response.getAggregations().get("catalog_agg");
for (Terms.Bucket bucket : catalogAgg.getBuckets()) {
SearchResult.CatalogVo catalogVo = new SearchResult.CatalogVo();
//得到分类id
String keyAsString = bucket.getKeyAsString();
catalogVo.setCatalogId(Long.parseLong(keyAsString));
//得到分类名
ParsedStringTerms catalogNameAgg = bucket.getAggregations().get("catalog_name_agg");
String catalogName = catalogNameAgg.getBuckets().get(0).getKeyAsString();
catalogVo.setCatalogName(catalogName);
catalogVos.add(catalogVo);
}
result.setCatalogs(catalogVos);
//===============以上可以从聚合信息中获取====================//
//5、分页信息-页码
result.setPageNum(param.getPageNum());
//5、1分页信息、总记录数
long total = hits.getTotalHits().value;
result.setTotal(total);
//5、2分页信息-总页码-计算
int totalPages = (int)total % EsConstant.PRODUCT_PAGESIZE == 0 ?
(int)total / EsConstant.PRODUCT_PAGESIZE : ((int)total / EsConstant.PRODUCT_PAGESIZE + 1);
result.setTotalPages(totalPages);
List<Integer> pageNavs = new ArrayList<>();
for (int i = 1; i <= totalPages; i++) {
pageNavs.add(i);
}
result.setPageNavs(pageNavs);
return result;
}
/**
* 准备检索请求
* 模糊匹配,过滤(按照属性,分类,品牌,价格区间,库存),排序,分页,高亮,聚合分析
* @return
*/
private SearchRequest buildSearchRequest(SearchParam param) {
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
/**
* 模糊匹配,过滤(按照属性,分类,品牌,价格区间,库存)
*/
//1. 构建bool-query
BoolQueryBuilder boolQueryBuilder=new BoolQueryBuilder();
//1.1 bool-must
if(!StringUtils.isEmpty(param.getKeyword())){
boolQueryBuilder.must(QueryBuilders.matchQuery("skuTitle",param.getKeyword()));
}
//1.2 bool-fiter
//1.2.1 catelogId
if(null != param.getCatalog3Id()){
boolQueryBuilder.filter(QueryBuilders.termQuery("catalogId",param.getCatalog3Id()));
}
//1.2.2 brandId
if(null != param.getBrandId() && param.getBrandId().size() >0){
boolQueryBuilder.filter(QueryBuilders.termsQuery("brandId",param.getBrandId()));
}
//1.2.3 attrs
if(param.getAttrs() != null && param.getAttrs().size() > 0){
param.getAttrs().forEach(item -> {
//attrs=1_5寸:8寸&2_16G:8G
BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
//attrs=1_5寸:8寸
String[] s = item.split("_");
String attrId=s[0];
String[] attrValues = s[1].split(":");//这个属性检索用的值
boolQuery.must(QueryBuilders.termQuery("attrs.attrId",attrId));
boolQuery.must(QueryBuilders.termsQuery("attrs.attrValue",attrValues));
NestedQueryBuilder nestedQueryBuilder = QueryBuilders.nestedQuery("attrs",boolQuery, ScoreMode.None);
boolQueryBuilder.filter(nestedQueryBuilder);
});
}
//1.2.4 hasStock
if(null != param.getHasStock()){
boolQueryBuilder.filter(QueryBuilders.termQuery("hasStock",param.getHasStock() == 1));
}
//1.2.5 skuPrice
if(!StringUtils.isEmpty(param.getSkuPrice())){
//skuPrice形式为:1_500或_500或500_
RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("skuPrice");
String[] price = param.getSkuPrice().split("_");
if(price.length==2){
rangeQueryBuilder.gte(price[0]).lte(price[1]);
}else if(price.length == 1){
if(param.getSkuPrice().startsWith("_")){
rangeQueryBuilder.lte(price[1]);
}
if(param.getSkuPrice().endsWith("_")){
rangeQueryBuilder.gte(price[0]);
}
}
boolQueryBuilder.filter(rangeQueryBuilder);
}
//封装所有的查询条件
searchSourceBuilder.query(boolQueryBuilder);
/**
* 排序,分页,高亮
*/
//排序
//形式为sort=hotScore_asc/desc
if(!StringUtils.isEmpty(param.getSort())){
String sort = param.getSort();
String[] sortFileds = sort.split("_");
SortOrder sortOrder="asc".equalsIgnoreCase(sortFileds[1])?SortOrder.ASC:SortOrder.DESC;
searchSourceBuilder.sort(sortFileds[0],sortOrder);
}
//分页
searchSourceBuilder.from((param.getPageNum()-1)* EsConstant.PRODUCT_PAGESIZE);
searchSourceBuilder.size(EsConstant.PRODUCT_PAGESIZE);
//高亮
if(!StringUtils.isEmpty(param.getKeyword())){
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.field("skuTitle");
highlightBuilder.preTags("<b style='color:red'>");
highlightBuilder.postTags("</b>");
searchSourceBuilder.highlighter(highlightBuilder);
}
/**
* 聚合分析
*/
//1. 按照品牌进行聚合
TermsAggregationBuilder brandAgg = AggregationBuilders.terms("brand_agg");
brandAgg.field("brandId").size(50);
//1.1 品牌的子聚合-品牌名聚合
brandAgg.subAggregation(AggregationBuilders.terms("brand_name_agg")
.field("brandName").size(1));
//1.2 品牌的子聚合-品牌图片聚合
brandAgg.subAggregation(AggregationBuilders.terms("brand_img_agg")
.field("brandImg").size(1));
searchSourceBuilder.aggregation(brandAgg);
//2. 按照分类信息进行聚合
TermsAggregationBuilder catalogAgg = AggregationBuilders.terms("catalog_agg");
catalogAgg.field("catalogId").size(20);
catalogAgg.subAggregation(AggregationBuilders.terms("catalog_name_agg").field("catalogName").size(1));
searchSourceBuilder.aggregation(catalogAgg);
//2. 按照属性信息进行聚合
NestedAggregationBuilder attrAgg = AggregationBuilders.nested("attr_agg", "attrs");
//2.1 按照属性ID进行聚合
TermsAggregationBuilder attrIdAgg = AggregationBuilders.terms("attr_id_agg").field("attrs.attrId");
attrAgg.subAggregation(attrIdAgg);
//2.1.1 在每个属性ID下,按照属性名进行聚合
attrIdAgg.subAggregation(AggregationBuilders.terms("attr_name_agg").field("attrs.attrName").size(1));
//2.1.1 在每个属性ID下,按照属性值进行聚合
attrIdAgg.subAggregation(AggregationBuilders.terms("attr_value_agg").field("attrs.attrValue").size(50));
searchSourceBuilder.aggregation(attrAgg);
log.debug("构建的DSL语句 {}",searchSourceBuilder.toString());
SearchRequest searchRequest = new SearchRequest(new String[]{EsConstant.PRODUCT_INDEX},searchSourceBuilder);
return searchRequest;
}
}
- 依赖注入:
@Autowired
:自动注入RestHighLevelClient
,这是Elasticsearch的Java高级REST客户端。
-
搜索方法:
search(SearchParam param)
:根据传入的搜索参数param
执行搜索,并返回SearchResult
对象。
-
构建搜索请求:
buildSearchRequest(SearchParam param)
:动态构建Elasticsearch的搜索请求,包括查询条件、排序、分页、高亮和聚合分析。
-
构建搜索结果:
buildSearchResult(SearchResponse response, SearchParam param)
:从Elasticsearch的响应中提取数据,并构建SearchResult
对象。
-
查询构建细节:
- 使用
BoolQueryBuilder
来构建复合查询,包括必须匹配的条件(must
)、过滤条件(filter
)等。 - 对于每个搜索参数,如关键字、分类ID、品牌ID、属性、库存、价格区间等,都有相应的查询构建逻辑。
- 使用
-
高亮显示:
- 如果搜索包含关键字,则使用
HighlightBuilder
来高亮显示匹配的文本。
- 如果搜索包含关键字,则使用
-
排序和分页:
- 根据参数设置排序字段和顺序。
- 设置分页的页码和每页大小。
-
聚合分析:
- 对品牌、分类和属性进行聚合分析,以便于在搜索结果的侧边栏展示统计信息。
六,183-商城业务-检索服务-验证结果封装正确性
在首页搜索框输入“华为”,点击搜索,跳转到搜索页面,后端会执行ES检索,查看日志,判断接口响应结果是否符合预期。