长度最小的子数组
链接:
. - 力扣(LeetCode)
题目:给定一个含有 n 个正整数的数组和一个正整数 target 。找出该数组中满足其总和大于等于 target 的长度最小的 子数组子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
提示:
1 <= target <= 10^9
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^5
解法一
图解
算法思路
「从前往后」枚举数组中的任意⼀个元素,把它当成起始位置。然后从这个「起始位置」开始,然
后寻找⼀段最短的区间,使得这段区间的和「⼤于等于」⽬标值。
将所有元素作为起始位置所得的结果中,找到「最⼩值」即可。
代码省略,超时。
解法二(滑动窗口)
算法思路
由于此问题分析的对象是「⼀段连续的区间」,因此可以考虑「滑动窗⼝」的思想来解决这道题。让滑动窗⼝满⾜:从 i 位置开始,窗⼝内所有元素的和⼩于 target (那么当窗⼝内元素之和第⼀次⼤于等于⽬标值的时候,就是 i 位置开始,满⾜条件的最⼩⻓度)。
做法:将右端元素划⼊窗⼝中,统计出此时窗⼝内元素的和:
▪ 如果窗⼝内元素之和⼤于等于 target :更新结果,并且将左端元素划出去的同时继续判断是否满⾜条件并更新结果(因为左端元素可能很⼩,划出去之后依旧满⾜条件)
▪ 如果窗⼝内元素之和不满⾜条件: right++ ,另下⼀个元素进⼊窗⼝。
为何滑动窗⼝可以解决问题,并且时间复杂度更低?
▪ 这个窗⼝寻找的是:以当前窗⼝最左侧元素(记为 left1 )为基准,符合条件的情况。也就是在这道题中,从 left1 开始,满⾜区间和 sum >= target 时的最右侧(记为right1 )能到哪⾥。
▪ 我们既然已经找到从 left1 开始的最优的区间,那么就可以⼤胆舍去 left1 。但是如果继续像⽅法⼀ 样,重新开始统计第⼆个元素( left2 )往后的和,势必会有⼤量重复的计算(因为我们在求第⼀段区间的时候,已经算出很多元素的和了,这些和是可以在计算下次区间和的时候⽤上的)。
▪ 此时, rigth1 的作⽤就体现出来了,我们只需将 left1 这个值从 sum 中剔除。从right1 这个元素开始,往后找满⾜ left2 元素的区间(此时 right1 也有可能是满⾜的,因为 left1 可能很⼩。 sum 剔除掉 left1 之后,依旧满⾜⼤于等于target )。这样我们就能省掉⼤量重复的计算。
▪ 这样我们不仅能解决问题,⽽且效率也会⼤ 提升。
时间复杂度:虽然代码是两层循环,但是我们的 left 指针和 right 指针都是不回退的,两者最多都往后移动 n 次。因此时间复杂度是 O(N) 。
图解
举例
代码
public int minSubArrayLen(int target, int[] nums) {
int n = nums.length;
int sum = 0;
int len = Integer.MAX_VALUE;//由于在最开始的时候,如果len定义为0,就会导致在下面进行第一次出窗口比较len的时候,由于0比任何数都小,会导致输出结果为0,错误解答
//left = 0,right = 0
for(int left = 0,right = 0;right < n;right++){
//进窗口
sum += nums[right];
//判断,如果sum>= target,就进行统计更新len,然后出窗口,再判断是否结束(right是否越界),未结束就让left++
while(sum >= target){
len = Math.min(len,right - left + 1);
sum -= nums[left];
left++;
}
}
//如果没有找到满足target的子数组,就需要返回0
return len == Integer.MAX_VALUE ? 0 : len;
}