文章目录
- 回顾
- 提要
- 连通图
- 生成树
- 最小生成树
- 构造最小生成树的算法
- 普里姆(Prim)算法
- 克鲁斯卡尔(Kruskal)算法
- 最短路径
- 狄杰斯特拉 (Dijkstra) 算法
- 当前最短路径的更新
- 拓扑排序
- 拓扑排序方法
- 拓扑排序示例
- 总结
回顾
图的遍历方法:
- 深度优先遍历 (DFS):从任意顶点开始,访问其未访问过的邻接点,直至全部访问完毕。
- 广度优先遍历 (BFS):从任意顶点开始,访问其所有未访问过的邻接点,然后是下一层的邻接点,直至所有顶点被访问。
提要
- 最小生成树的概念。
- 最小生成树的构造算法:
- 普里姆 (Prim) 算法
- 克鲁斯卡尔 (Kruskal) 算法
- 单源点最短路径。
- 拓扑排序。
连通图
连通图:图中任意两个顶点都是连通的。在连通图中,从任意顶点出发进行深度优先遍历或广度优先遍历,都可以访问图中所有其他顶点。
生成树
生成树:包含连通图全部顶点的极小连通子图,即以最少的边连接连通图中所有的顶点。
最小生成树
最小生成树:带权连通图的所有生成树中权值之和最小的生成树。在实际问题中,如管道铺设问题,可以应用最小生成树来最小化成本。
最小生成树:带权连通图的所有生成树中权值之和最小的生成树。
在实际问题中的应用:管道的铺设问题。
n 个小区只需铺设 n-1 条管线就能连通,各条管线的投资成本不同,如何使得总的投资成本最低?最小生成树。
构造最小生成树的算法
- 普里姆 (Prim) 算法:从任一顶点开始,逐步扩展最小生成树,每次添加权值最小的边。
- 克鲁斯卡尔 (Kruskal) 算法:按边权值从小到大的顺序选择边,形成最小生成树,不形成环。
普里姆(Prim)算法
示例:
求解过程:
- 初始化U={v}。v到其他顶点的所有边为候选边;
- 重复以下步骤n-1次,使得其他n-1个顶点被加入到U中:
- 从候选边中挑选权值最小的边输出,设该边在V-U中的顶点是k,将k加入U中;
- 考察当前V-U中的所有顶点j,修改候选边:若 (k, j) 的权值小于原来和顶点 j 关联的候选边,则用 (k, j) 取代后者作为候选边。
克鲁斯卡尔(Kruskal)算法
假设N=(V,E)是连通网(带权的图),令最小生成树的初始状态为包含全部n个顶点,但没有边的非连通图T=(V,{ }),图中每个顶点自成一个连通分量。
在E中选择权值最小的边,若该边依附的顶点落在T中不同的连通分量上,则将此边加入到T中,否则舍去此边而选择下一条权值最小的边。依此类推,直至所有顶点都在同一连通分量上为止。
示例:
求解过程:
- T的初始状态:包含n个顶点、不包含边的森林:T=(V,Ø );
- 按权值递增的顺序选择E中的n-1条安全边(u,v),并加入T;
- 安全边指两个顶点分别是森林T里两棵树中的顶点的边。安全边的加入,不会形成环。加入安全边,可将森林中的两棵树连接成一棵更大的树。
最短路径
最短路径:带权图中从源点到终点的所有路径中,所经过边的权值之和最小的路径。
图的最短路径:
单源点最短路径:从一个顶点到其余各顶点的最短路径;
每对顶点间的最短路径。
狄杰斯特拉 (Dijkstra) 算法
求解单源点最短路径的算法,通过不断更新顶点间的最短路径来实现。
当前最短路径的更新
拓扑排序
拓扑排序:在一个有向图中找一个满足所有有向边的方向的顶点序列的过程。
拓扑排序方法
- 从有向图中选择一个没有前驱(入度为0)的顶点并输出。
- 从图中删去该顶点及发出的全部有向边。
- 重复以上步骤,直到所有顶点都被输出。
拓扑排序示例
计算机专业课程学习顺序的拓扑排序,展示了如何根据先修课程的要求进行排序。
课程之间的先后关系可用有向图表示:
拓扑序列:C2-C7-C1-C3-C4-C5-C6 或:C1-C2-C3-C4-C5-C7-C6 等
注意:拓扑序列不一定唯一。
总结
- 普里姆 (Prim) 算法和克鲁斯卡尔 (Kruskal) 算法构造最小生成树的方法。
- 狄杰斯特拉 (Dijkstra) 算法求解单源点最短路径。
- 拓扑排序的应用。