动手学深度学习7.2 使用块的网络(VGG)-笔记练习(PyTorch)

news2024/9/26 3:29:01

以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。

本节课程地址:25 使用块的网络 VGG【动手学深度学习v2】_哔哩哔哩_bilibili

本节教材地址:7.2. 使用块的网络(VGG) — 动手学深度学习 2.0.0 documentation (d2l.ai)

本节开源代码:...>d2l-zh>pytorch>chapter_multilayer-perceptrons>vgg.ipynb


使用块的网络(VGG)

虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络。 在下面的几个章节中,我们将介绍一些常用于设计深层神经网络的启发式概念。

与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络架构的设计也逐渐变得更加抽象。研究人员开始从单个神经元的角度思考问题,发展到整个层,现在又转向块,重复层的模式。

使用块的想法首先出现在牛津大学的视觉几何组(visual geometry group)的VGG网络中。通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的架构。

(VGG块)

经典卷积神经网络的基本组成部分是下面的这个序列:

  1. 带填充以保持分辨率的卷积层;
  2. 非线性激活函数,如ReLU;
  3. 汇聚层,如最大汇聚层。

而一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。在最初的VGG论文(论文链接:1409.1556 (arxiv.org))中,作者使用了带有 3×3 卷积核、填充为1(保持高度和宽度)的卷积层,和带有 2×2 汇聚窗口、步幅为2(每个块后的分辨率减半)的最大汇聚层。在下面的代码中,我们定义了一个名为vgg_block的函数来实现一个VGG块。

该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数量out_channels.

import torch
from torch import nn
from d2l import torch as d2l


def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)

[VGG网络]

与AlexNet、LeNet一样,VGG网络可以分为两部分:第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。如 图7.2.1 中所示。

VGG神经网络连接 图7.2.1 的几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。该变量指定了每个VGG块里卷积层个数和输出通道数。全连接模块则与AlexNet中的相同。

原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。 第一个模块有64个输出通道,每个后续模块将输出通道数量翻倍,直到该数字达到512。由于该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11。

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

下面的代码实现了VGG-11。可以通过在conv_arch上执行for循环来简单实现。

def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

net = vgg(conv_arch)

接下来,我们将构建一个高度和宽度为224的单通道数据样本,以[观察每个层输出的形状]。

X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__,'output shape:\t',X.shape)

输出结果:
Sequential output shape: torch.Size([1, 64, 112, 112])
Sequential output shape: torch.Size([1, 128, 56, 56])
Sequential output shape: torch.Size([1, 256, 28, 28])
Sequential output shape: torch.Size([1, 512, 14, 14])
Sequential output shape: torch.Size([1, 512, 7, 7])
Flatten output shape: torch.Size([1, 25088])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 10])

正如从代码中所看到的,我们在每个块的高度和宽度减半,最终高度和宽度都为7。最后再展平表示,送入全连接层处理。

训练模型

[由于VGG-11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络],足够用于训练Fashion-MNIST数据集。

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__,'output shape:\t',X.shape)

输出结果:
Sequential output shape: torch.Size([1, 16, 112, 112])
Sequential output shape: torch.Size([1, 32, 56, 56])
Sequential output shape: torch.Size([1, 64, 28, 28])
Sequential output shape: torch.Size([1, 128, 14, 14])
Sequential output shape: torch.Size([1, 128, 7, 7])
Flatten output shape: torch.Size([1, 6272])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 4096])
ReLU output shape: torch.Size([1, 4096])
Dropout output shape: torch.Size([1, 4096])
Linear output shape: torch.Size([1, 10])

除了使用略高的学习率外,[模型训练]过程与 :numref:sec_alexnet中的AlexNet类似。

lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果:
loss 0.174, train acc 0.935, test acc 0.918
783.2 examples/sec on cuda:0

小结

  • VGG-11使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。
  • 块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。
  • 在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现深层且窄的卷积(即 3×3 )比较浅层且宽的卷积更有效。

练习

  1. 打印层的尺寸时,我们只看到8个结果,而不是11个结果。剩余的3层信息去哪了?
    解:
    因为后三个VGG块包含两个卷积层,但是打印层只显示每个VGG块最终的尺寸,所以少了3层信息。
  2. 与AlexNet相比,VGG的计算要慢得多,而且它还需要更多的显存。分析出现这种情况的原因。
    解:
    VGG比AlexNet的卷积层更多,且网络深度更深,导致计算复杂度、计算量和显存占用更大,因此在同样的计算设备上,VGG相比AlexNet计算更慢。
  3. 尝试将Fashion-MNIST数据集图像的高度和宽度从224改为96。这对实验有什么影响?
    解:
    将Fashion-MNIST数据集图像的高度和宽度从224改为96会改变卷积到全连接层的尺寸,需要修改一下vgg全连接层部分的参数,实验结果比224尺寸的训练速度更快,但训练精度略下降。
    代码如下:
def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分,根据输入图像尺寸改为3*3
        nn.Linear(out_channels * 3 * 3, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

net = vgg(conv_arch)
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果:
loss 0.212, train acc 0.920, test acc 0.911
799.1 examples/sec on cuda:0

  1. 请参考VGG论文 (论文链接:1409.1556 (arxiv.org))中的表1构建其他常见模型,如VGG-16或VGG-19。 解:
    论文链接:https://arxiv.org/pdf/1409.1556
    表1如下图:

VGG-16和VGG-19构建代码如下:

# VGG-16(D)
conv_arch = ((2, 64), (2, 128), (3, 256), (3, 512), (3, 512))
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果:
loss 0.182, train acc 0.933, test acc 0.917
400.5 examples/sec on cuda:0

# VGG-19(E)
conv_arch = ((2, 64), (2, 128), (4, 256), (4, 512), (4, 512))
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果:
loss 0.229, train acc 0.914, test acc 0.908
358.6 examples/sec on cuda:0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1988926.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

软考-软件设计师 (计算机组成和体系结构习题)

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…

如何提前预防网络威胁

一、引言 随着信息技术的迅猛进步,网络安全议题愈发凸显,成为社会各界不可忽视的重大挑战。近年来,一系列网络安全事件的爆发,如同惊雷般震撼着个人、企业及国家的安全防线,揭示了信息安全保护的紧迫性与复杂性。每一…

力扣笔试题(十一)

1、删除链表的中间节点 给你一个链表的头节点 head 。删除 链表的 中间节点 ,并返回修改后的链表的头节点 head 。 长度为 n 链表的中间节点是从头数起第 ⌊n / 2⌋ 个节点(下标从 0 开始),其中 ⌊x⌋ 表示小于或等于 x 的最大整数…

java开发的ai文生图程序。

这个源码支持Web、Android、IOS、H5等多终端应用。它使用ChatGPT模型实现智能聊天机器人,并支持绘图自动生成Vincent图。 支持自动绘画功能。

面试:ArrayList和LinkedList

ArrayList和LinkedList是什么? ArrayList: ArrayList是Java集合框架中的一个类,它实现了List接口,底层基于数组实现。ArrayList的特点是支持动态数组,可以自动扩容,适合顺序访问和随机访问。LinkedList&am…

一行命令搞定内网穿透

一行命令搞定内网穿透 一款开源免费的内网穿透工具:localtunnel ,基于 nodejs 实现,无需修改 DNS 和防火墙设置,方便快捷的将内网服务暴露到外网,为开发人员、测试人员以及需要分享本地项目的人提供实时的公网访问方式…

Qt 快速部署环境(windeployqt.exe)

windeployqt.exe 是 Qt 框架提供的一个工具,主要用于将 Qt 应用程序部署到 Windows 环境中。它自动将所需的所有库、插件和文件复制到应用程序的目录中,以便用户能够直接运行应用程序,而无需额外的配置。 主要功能 自动识别依赖项&#xff…

《Milvus Cloud向量数据库指南》——高可用黄金标准:深入解析与业务策略

在当今这个数字化时代,系统的持续运行与稳定性已成为企业成功的关键因素之一。高可用性(High Availability, HA)作为保障系统稳定运行的重要策略,其重要性不言而喻。虽然高可用并不能承诺100%的无故障运行,但通过一系列精心设计的机制和技术手段,它能够极大地提升系统的可…

【颠覆数据处理的利器】全面解读Apache Flink实时大数据处理的引擎-上篇

什么是 Apache Flink? Apache Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。Flink 被设计为在所有常见的集群环境中运行,以内存速度和任何规模执行计算。 如何理解无界和有界数据? 无界数据&#…

Redis 安装篇(阿里云服务器)

操作系统用的是Alibaba Cloud Linux release 3 (Soaring Falcon)系统,可以通过命令:lsb_release -a 查看系统信息。 一、安装Redis 1.更新软件包 sudo yum update2.安装Redis sudo yum install redis3.启动Redis服务 sudo systemctl start redis4.设…

MiniCPM-V: A GPT-4V Level MLLM on Your Phone 手机上的 GPT-4V 级多模态大模型

GitHub - OpenBMB/MiniCPM-V: MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone 2408.01800 (arxiv.org) 目录 Introduction Model Architecture Training End-side Deployment MiniCPM-V是一种高效的多模态大型语言模型&…

【Linux】常用指令集合

目录 1.who:查看使用云服务器的账号 2.pwd:显示当前所处的工作目录 3.ls:列出当前目录中的文件和子目录 ls 查看目录中的文件和子目录 ls -l 或者 ll 显示文件和目录的详细信息 ls -a 列出全部文件,包含隐藏文件 4.cd&#xf…

新火种AI|ChatGPT架构师突然离职!OpenAI为什么总留不住大佬和高手?

作者:小岩 编辑:彩云 8月6日,OpenAI内部再次传出人员大地震的消息。 根据Information的消息,OpenAI的联合创始人John Schulman突然官宣离职,而他要跳槽去的地方正是OpenAI的老冤家老对手——Anthropic。与此同时&am…

remote: Support for password authentication was removed on August 13, 2021.

remote: Support for password authentication was removed on August 13, 2021. 2021年8月13日 github修改了验证的方法,相关的密码不能够直接输入,需要通过相关的秘钥token进行输入。 因此我们需要在自己的账户生成对应的token才可以正常的在本地push对…

python-报数(赛氪OJ)

[题目描述] 有 n 人围成一圈,顺序排号。 从第 1 个人开始报数(从 1 到 3 报数),凡是报到 3 的人退出圈子,问最后留下的是原来的第几号的那位。输入格式: 初始人数 n 。输出格式: 最后一人的初始…

在Jmeter中通过正则提取表达器和BeanShell提取器将接口返回的结果写入到指定txt文件中

jmeter 把响应结果数据写入到指定文件_jmeter输出返回结果到文件-CSDN博客 上面是参考链接 1、如图所示,需要在jmeter中将所有接口中返回的响应数据写入到指定的文件中 2、选择需要的接口右击-添加-后置处理器-正则表达式提取器; 3、在正则表达式提取器…

1.mysql-DDL-数据库操作

DDL-数据库操作定义语言 DML-数据库操作语言 DCL-数据库控制语言 DQL-数据库查询语言 DDL-数据库操作 DDL-数据库操作- 查询 查询所有数据 SHOW DATABASES;查询当前数据库 SELECT DATABASE();DDL-数据库操作- 创建 CREATE DATABSE [IF NOT EXISTS] 数据库名 [ DEFAULT CHA…

Haproxy搭建Web群集(群集)

HAProxy是一个使用C语言编写的自由及开放源代码软件,其提供高可用性、负载均衡,以及基于TCP和HTTP的应用程序代理。 HAProxy特别适用于那些负载特大的web站点,这些站点通常又需要会话保持或七层处理。HAProxy运行在当前的硬件上,…

“订单循环激励:企业增长新引擎“

在当今竞争白热化的市场洪流中,如何独辟蹊径,让您的企业成为万众瞩目的焦点,吸引并留住海量用户的心?今天,让我们深入探索一种革命性的营销新策略——“订单循环激励模式”,它不仅能够激发用户的参与热情&a…

【大模型学习】快速下载大模型权重和评估大模型占用显存

一、下载模型 1.1 使用Hugging Face Hub下载模型 首先,我们需要设置环境变量以使用镜像站点加速下载。 主要要先安装相应的函数库: pip install huggingface_hub import os os.environ[HF_ENDPOINT] https://hf-mirror.com from huggingface_hub i…